The scalar-plus-compact property in spaces without reflexive subspaces
A hereditarily indecomposable Banach space \mathfrak{X}_{\mathfrak{nr}} is constructed that is the first known example of a \mathscr {L}_\infty -space not containing c_0, \ell _1, or reflexive subspaces, and it answers a question posed by J. Bourgain. Moreover, the space \mathfrak{X}_{\mathfrak{nr}}...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2019-02, Vol.371 (3), p.1887-1924 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A hereditarily indecomposable Banach space \mathfrak{X}_{\mathfrak{nr}} is constructed that is the first known example of a \mathscr {L}_\infty -space not containing c_0, \ell _1, or reflexive subspaces, and it answers a question posed by J. Bourgain. Moreover, the space \mathfrak{X}_{\mathfrak{nr}} satisfies the ``scalar-plus-compact'' property and is the first known space without reflexive subspaces having this property. It is constructed using the Bourgain-Delbaen method in combination with a recent version of saturation under constraints in a mixed-Tsirelson setting. As a result, the space \mathfrak{X}_{\mathfrak{nr}} has a shrinking finite-dimensional decomposition and does not contain a boundedly complete sequence. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/7353 |