The scalar-plus-compact property in spaces without reflexive subspaces

A hereditarily indecomposable Banach space \mathfrak{X}_{\mathfrak{nr}} is constructed that is the first known example of a \mathscr {L}_\infty -space not containing c_0, \ell _1, or reflexive subspaces, and it answers a question posed by J. Bourgain. Moreover, the space \mathfrak{X}_{\mathfrak{nr}}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-02, Vol.371 (3), p.1887-1924
Hauptverfasser: ARGYROS, SPIROS A., MOTAKIS, PAVLOS
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A hereditarily indecomposable Banach space \mathfrak{X}_{\mathfrak{nr}} is constructed that is the first known example of a \mathscr {L}_\infty -space not containing c_0, \ell _1, or reflexive subspaces, and it answers a question posed by J. Bourgain. Moreover, the space \mathfrak{X}_{\mathfrak{nr}} satisfies the ``scalar-plus-compact'' property and is the first known space without reflexive subspaces having this property. It is constructed using the Bourgain-Delbaen method in combination with a recent version of saturation under constraints in a mixed-Tsirelson setting. As a result, the space \mathfrak{X}_{\mathfrak{nr}} has a shrinking finite-dimensional decomposition and does not contain a boundedly complete sequence.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/7353