Algebraic approximations to linear combinations of powers: An extension of results by Mahler and Corvaja--Zannier

For every complex number x, let \Vert x\Vert _{\mathbb{Z}}:=\min \{\vert x-m\vert:\ m\in \mathbb{Z}\}. Let K be a number field, let k\in \mathbb{N}, and let \alpha _1,\ldots ,\alpha _k be non-zero algebraic numbers. In this paper, we completely solve the problem of the existence of \theta \in (0,1)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2019-03, Vol.371 (6), p.3787-3804
Hauptverfasser: KULKARNI, AVINASH, MAVRAKI, NIKI MYRTO, NGUYEN, KHOA D.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3804
container_issue 6
container_start_page 3787
container_title Transactions of the American Mathematical Society
container_volume 371
creator KULKARNI, AVINASH
MAVRAKI, NIKI MYRTO
NGUYEN, KHOA D.
description For every complex number x, let \Vert x\Vert _{\mathbb{Z}}:=\min \{\vert x-m\vert:\ m\in \mathbb{Z}\}. Let K be a number field, let k\in \mathbb{N}, and let \alpha _1,\ldots ,\alpha _k be non-zero algebraic numbers. In this paper, we completely solve the problem of the existence of \theta \in (0,1) such that there are infinitely many tuples (n,q_1,\ldots ,q_k) satisfying \Vert q_1\alpha _1^n+\cdots +q_k\alpha _k^n\Vert _{\mathbb{Z}}
doi_str_mv 10.1090/tran/7316
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26707225</jstor_id><sourcerecordid>26707225</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-ecc657a0c1f871cb657712674133173bfceba9fd29d9b76b8fa02074fd18a3bc3</originalsourceid><addsrcrecordid>eNp9ULtOwzAUtRBIlMLAByB5YGEwteMkTtiqipdUxAILS3Tt2JAqtYNtoP17HLViZLo6D52rcxA6Z_Sa0ZrOogc7E5yVB2jCaFWRsiroIZpQSjNS17k4RichrBKkeVVO0Oe8f9fSQ6cwDIN3m24NsXM24Ohw31kNHiu3lp3d087gwf1oH27w3GK9idqGJIy81-GrjwHLLX6Cj157DLbFC-e_YQWEvIG1nfan6MhAH_TZ_k7R693ty-KBLJ_vHxfzJQHOiki0UmUhgCpmKsGUTECwrBQ545wJLo3SEmrTZnVbS1HKygDNqMhNyyrgUvEputrlKu9C8No0g0_l_LZhtBm3asatmnGr5L3YeVchOv9nTO-oyLIi6Zc7Hdbhn5hfsgt0qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Algebraic approximations to linear combinations of powers: An extension of results by Mahler and Corvaja--Zannier</title><source>American Mathematical Society Publications</source><creator>KULKARNI, AVINASH ; MAVRAKI, NIKI MYRTO ; NGUYEN, KHOA D.</creator><creatorcontrib>KULKARNI, AVINASH ; MAVRAKI, NIKI MYRTO ; NGUYEN, KHOA D.</creatorcontrib><description>For every complex number x, let \Vert x\Vert _{\mathbb{Z}}:=\min \{\vert x-m\vert:\ m\in \mathbb{Z}\}. Let K be a number field, let k\in \mathbb{N}, and let \alpha _1,\ldots ,\alpha _k be non-zero algebraic numbers. In this paper, we completely solve the problem of the existence of \theta \in (0,1) such that there are infinitely many tuples (n,q_1,\ldots ,q_k) satisfying \Vert q_1\alpha _1^n+\cdots +q_k\alpha _k^n\Vert _{\mathbb{Z}}&lt;\theta ^n where n\in \mathbb{N} and q_1,\ldots ,q_k\in K^* have small logarithmic height compared to n. In the special case when q_1,\ldots ,q_k have the form q_i=qc_i for fixed c_1,\ldots ,c_k, our work yields results on algebraic approximations of c_1\alpha _1^n+\cdots +c_k\alpha _k^n of the form \frac {m}{q} with m\in \mathbb{Z} and q\in K^* (where q has small logarithmic height compared to n). Various results on linear recurrence sequences also follow as an immediate consequence. The case where k=1 and q_1 is essentially a rational integer was obtained by Corvaja and Zannier and settled a long-standing question of Mahler. The use of the Subspace Theorem based on work of Corvaja-Zannier, together with several modifications, plays an important role in the proof of our results.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7316</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2019-03, Vol.371 (6), p.3787-3804</ispartof><rights>Copyright 2018, American Mathematical Society</rights><rights>2018 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-ecc657a0c1f871cb657712674133173bfceba9fd29d9b76b8fa02074fd18a3bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2019-371-06/S0002-9947-2018-07316-0/S0002-9947-2018-07316-0.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2019-371-06/S0002-9947-2018-07316-0/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,778,782,23315,27911,27912,77593,77603</link.rule.ids></links><search><creatorcontrib>KULKARNI, AVINASH</creatorcontrib><creatorcontrib>MAVRAKI, NIKI MYRTO</creatorcontrib><creatorcontrib>NGUYEN, KHOA D.</creatorcontrib><title>Algebraic approximations to linear combinations of powers: An extension of results by Mahler and Corvaja--Zannier</title><title>Transactions of the American Mathematical Society</title><description>For every complex number x, let \Vert x\Vert _{\mathbb{Z}}:=\min \{\vert x-m\vert:\ m\in \mathbb{Z}\}. Let K be a number field, let k\in \mathbb{N}, and let \alpha _1,\ldots ,\alpha _k be non-zero algebraic numbers. In this paper, we completely solve the problem of the existence of \theta \in (0,1) such that there are infinitely many tuples (n,q_1,\ldots ,q_k) satisfying \Vert q_1\alpha _1^n+\cdots +q_k\alpha _k^n\Vert _{\mathbb{Z}}&lt;\theta ^n where n\in \mathbb{N} and q_1,\ldots ,q_k\in K^* have small logarithmic height compared to n. In the special case when q_1,\ldots ,q_k have the form q_i=qc_i for fixed c_1,\ldots ,c_k, our work yields results on algebraic approximations of c_1\alpha _1^n+\cdots +c_k\alpha _k^n of the form \frac {m}{q} with m\in \mathbb{Z} and q\in K^* (where q has small logarithmic height compared to n). Various results on linear recurrence sequences also follow as an immediate consequence. The case where k=1 and q_1 is essentially a rational integer was obtained by Corvaja and Zannier and settled a long-standing question of Mahler. The use of the Subspace Theorem based on work of Corvaja-Zannier, together with several modifications, plays an important role in the proof of our results.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9ULtOwzAUtRBIlMLAByB5YGEwteMkTtiqipdUxAILS3Tt2JAqtYNtoP17HLViZLo6D52rcxA6Z_Sa0ZrOogc7E5yVB2jCaFWRsiroIZpQSjNS17k4RichrBKkeVVO0Oe8f9fSQ6cwDIN3m24NsXM24Ohw31kNHiu3lp3d087gwf1oH27w3GK9idqGJIy81-GrjwHLLX6Cj157DLbFC-e_YQWEvIG1nfan6MhAH_TZ_k7R693ty-KBLJ_vHxfzJQHOiki0UmUhgCpmKsGUTECwrBQ545wJLo3SEmrTZnVbS1HKygDNqMhNyyrgUvEputrlKu9C8No0g0_l_LZhtBm3asatmnGr5L3YeVchOv9nTO-oyLIi6Zc7Hdbhn5hfsgt0qw</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>KULKARNI, AVINASH</creator><creator>MAVRAKI, NIKI MYRTO</creator><creator>NGUYEN, KHOA D.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190315</creationdate><title>Algebraic approximations to linear combinations of powers: An extension of results by Mahler and Corvaja--Zannier</title><author>KULKARNI, AVINASH ; MAVRAKI, NIKI MYRTO ; NGUYEN, KHOA D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-ecc657a0c1f871cb657712674133173bfceba9fd29d9b76b8fa02074fd18a3bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KULKARNI, AVINASH</creatorcontrib><creatorcontrib>MAVRAKI, NIKI MYRTO</creatorcontrib><creatorcontrib>NGUYEN, KHOA D.</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KULKARNI, AVINASH</au><au>MAVRAKI, NIKI MYRTO</au><au>NGUYEN, KHOA D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic approximations to linear combinations of powers: An extension of results by Mahler and Corvaja--Zannier</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>371</volume><issue>6</issue><spage>3787</spage><epage>3804</epage><pages>3787-3804</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>For every complex number x, let \Vert x\Vert _{\mathbb{Z}}:=\min \{\vert x-m\vert:\ m\in \mathbb{Z}\}. Let K be a number field, let k\in \mathbb{N}, and let \alpha _1,\ldots ,\alpha _k be non-zero algebraic numbers. In this paper, we completely solve the problem of the existence of \theta \in (0,1) such that there are infinitely many tuples (n,q_1,\ldots ,q_k) satisfying \Vert q_1\alpha _1^n+\cdots +q_k\alpha _k^n\Vert _{\mathbb{Z}}&lt;\theta ^n where n\in \mathbb{N} and q_1,\ldots ,q_k\in K^* have small logarithmic height compared to n. In the special case when q_1,\ldots ,q_k have the form q_i=qc_i for fixed c_1,\ldots ,c_k, our work yields results on algebraic approximations of c_1\alpha _1^n+\cdots +c_k\alpha _k^n of the form \frac {m}{q} with m\in \mathbb{Z} and q\in K^* (where q has small logarithmic height compared to n). Various results on linear recurrence sequences also follow as an immediate consequence. The case where k=1 and q_1 is essentially a rational integer was obtained by Corvaja and Zannier and settled a long-standing question of Mahler. The use of the Subspace Theorem based on work of Corvaja-Zannier, together with several modifications, plays an important role in the proof of our results.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/7316</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2019-03, Vol.371 (6), p.3787-3804
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_7316
source American Mathematical Society Publications
title Algebraic approximations to linear combinations of powers: An extension of results by Mahler and Corvaja--Zannier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20approximations%20to%20linear%20combinations%20of%20powers:%20An%20extension%20of%20results%20by%20Mahler%20and%20Corvaja--Zannier&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=KULKARNI,%20AVINASH&rft.date=2019-03-15&rft.volume=371&rft.issue=6&rft.spage=3787&rft.epage=3804&rft.pages=3787-3804&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7316&rft_dat=%3Cjstor_cross%3E26707225%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26707225&rfr_iscdi=true