Algebraic approximations to linear combinations of powers: An extension of results by Mahler and Corvaja--Zannier
For every complex number x, let \Vert x\Vert _{\mathbb{Z}}:=\min \{\vert x-m\vert:\ m\in \mathbb{Z}\}. Let K be a number field, let k\in \mathbb{N}, and let \alpha _1,\ldots ,\alpha _k be non-zero algebraic numbers. In this paper, we completely solve the problem of the existence of \theta \in (0,1)...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2019-03, Vol.371 (6), p.3787-3804 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For every complex number x, let \Vert x\Vert _{\mathbb{Z}}:=\min \{\vert x-m\vert:\ m\in \mathbb{Z}\}. Let K be a number field, let k\in \mathbb{N}, and let \alpha _1,\ldots ,\alpha _k be non-zero algebraic numbers. In this paper, we completely solve the problem of the existence of \theta \in (0,1) such that there are infinitely many tuples (n,q_1,\ldots ,q_k) satisfying \Vert q_1\alpha _1^n+\cdots +q_k\alpha _k^n\Vert _{\mathbb{Z}} |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/7316 |