A SHARP k-PLANE STRICHARTZ INEQUALITY FOR THE SCHRÖDINGER EQUATION
We prove that || X ( | u | 2 ) | | L i , l 3 ≤ C || f | | L 2 ( R 2 ) 2 , where u(x, t) is the solution to the linear time-dependent Schrödinger equation on R2 with initial datum f and X is the (spatial) X-ray transform on R2. In particular, we identify the best constant C and show that a datum f is...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2018-08, Vol.370 (8), p.5617-5633 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that
||
X
(
|
u
|
2
)
|
|
L
i
,
l
3
≤
C
||
f
|
|
L
2
(
R
2
)
2
,
where u(x, t) is the solution to the linear time-dependent Schrödinger equation on R2 with initial datum f and X is the (spatial) X-ray transform on R2. In particular, we identify the best constant C and show that a datum f is an extremiser if and only if it is a gaussian. We also establish bounds of this type in higher dimensions d, where the X-ray transform is replaced by the k-plane transform for any 1 ≤ k ≤ d − 1. In the process we obtain sharp L2(μ) bounds on Fourier extension operators associated with certain high-dimensional spheres involving measures μ supported on natural “co-k-planarity” sets. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/7309 |