Optimal discrete measures for Riesz potentials

For weighted Riesz potentials of the form K(x,y)=w(x,y)/K(x,y)=w(x,y)/ |x−y|s|x-y|^s, we investigate NN-point configurations x1,x2,…,xNx_1,x_2, \ldots , x_N on a dd-dimensional compact subset AA of Rp\mathbb {R}^p for which the minimum of ∑j=1NK(x,xj)\sum _{j=1}^NK(x,x_j) on AA is maximal. Such quan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2018-10, Vol.370 (10), p.6973-6993
Hauptverfasser: Borodachov, S. V., Hardin, D. P., Reznikov, A., Saff, E. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6993
container_issue 10
container_start_page 6973
container_title Transactions of the American Mathematical Society
container_volume 370
creator Borodachov, S. V.
Hardin, D. P.
Reznikov, A.
Saff, E. B.
description For weighted Riesz potentials of the form K(x,y)=w(x,y)/K(x,y)=w(x,y)/ |x−y|s|x-y|^s, we investigate NN-point configurations x1,x2,…,xNx_1,x_2, \ldots , x_N on a dd-dimensional compact subset AA of Rp\mathbb {R}^p for which the minimum of ∑j=1NK(x,xj)\sum _{j=1}^NK(x,x_j) on AA is maximal. Such quantities are called NN-point Riesz ss-polarization (or Chebyshev) constants. For s⩾ds\geqslant d, we obtain the dominant term as N→∞N\to \infty of such constants for a class of dd-rectifiable subsets of Rp\mathbb {R}^p. This class includes compact subsets of dd-dimensional C1C^1 manifolds whose boundary relative to the manifold has dd-dimensional Hausdorff measure zero, as well as finite unions of such sets when their pairwise intersections have measure zero. We also explicitly determine the weak-star limit distribution of asymptotically optimal NN-point configurations for weighted ss-polarization as N→∞N\to \infty.
doi_str_mv 10.1090/tran/7224
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_7224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90024071</jstor_id><sourcerecordid>90024071</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-ecfe6fd090014d19b65b8c68e68cc917d97baeb8366c34c1219603a97530c7343</originalsourceid><addsrcrecordid>eNp9j09Lw0AQxRdRMFYPfgAhBy8e0s5mN_vnKMWqUCiInsNmM4GUpgk760E_vVsiHj09hvfjzXuM3XJYcrCwisEdV7os5RnLOBhTKFPBOcsAoCyslfqSXRHt0wnSqIwtd1PsB3fI2558wIj5gI4-A1LejSF_65G-82mMeIy9O9A1u-iS4M2vLtjH5ul9_VJsd8-v68dt4QSvYoG-Q9W1qRBw2XLbqKoxXhlUxnvLdWt147AxQikvpOcltwqEs7oS4LWQYsEe5lwfRqKAXT2FVDN81Rzq09D6NLQ-DU3s3czuKY7hD0y_SwmaJ_9-9t1A_8T8AHmtW1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal discrete measures for Riesz potentials</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Borodachov, S. V. ; Hardin, D. P. ; Reznikov, A. ; Saff, E. B.</creator><creatorcontrib>Borodachov, S. V. ; Hardin, D. P. ; Reznikov, A. ; Saff, E. B.</creatorcontrib><description>For weighted Riesz potentials of the form K(x,y)=w(x,y)/K(x,y)=w(x,y)/ |x−y|s|x-y|^s, we investigate NN-point configurations x1,x2,…,xNx_1,x_2, \ldots , x_N on a dd-dimensional compact subset AA of Rp\mathbb {R}^p for which the minimum of ∑j=1NK(x,xj)\sum _{j=1}^NK(x,x_j) on AA is maximal. Such quantities are called NN-point Riesz ss-polarization (or Chebyshev) constants. For s⩾ds\geqslant d, we obtain the dominant term as N→∞N\to \infty of such constants for a class of dd-rectifiable subsets of Rp\mathbb {R}^p. This class includes compact subsets of dd-dimensional C1C^1 manifolds whose boundary relative to the manifold has dd-dimensional Hausdorff measure zero, as well as finite unions of such sets when their pairwise intersections have measure zero. We also explicitly determine the weak-star limit distribution of asymptotically optimal NN-point configurations for weighted ss-polarization as N→∞N\to \infty.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7224</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Transactions of the American Mathematical Society, 2018-10, Vol.370 (10), p.6973-6993</ispartof><rights>Copyright 2018 American Mathematical Society</rights><rights>2018 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-ecfe6fd090014d19b65b8c68e68cc917d97baeb8366c34c1219603a97530c7343</citedby><cites>FETCH-LOGICAL-a315t-ecfe6fd090014d19b65b8c68e68cc917d97baeb8366c34c1219603a97530c7343</cites><orcidid>0000-0003-0867-2146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2018-370-10/S0002-9947-2018-07224-5/S0002-9947-2018-07224-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2018-370-10/S0002-9947-2018-07224-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,799,828,23303,23307,27901,27902,57992,57996,58225,58229,77578,77580,77588,77590</link.rule.ids></links><search><creatorcontrib>Borodachov, S. V.</creatorcontrib><creatorcontrib>Hardin, D. P.</creatorcontrib><creatorcontrib>Reznikov, A.</creatorcontrib><creatorcontrib>Saff, E. B.</creatorcontrib><title>Optimal discrete measures for Riesz potentials</title><title>Transactions of the American Mathematical Society</title><addtitle>Trans. Amer. Math. Soc</addtitle><description>For weighted Riesz potentials of the form K(x,y)=w(x,y)/K(x,y)=w(x,y)/ |x−y|s|x-y|^s, we investigate NN-point configurations x1,x2,…,xNx_1,x_2, \ldots , x_N on a dd-dimensional compact subset AA of Rp\mathbb {R}^p for which the minimum of ∑j=1NK(x,xj)\sum _{j=1}^NK(x,x_j) on AA is maximal. Such quantities are called NN-point Riesz ss-polarization (or Chebyshev) constants. For s⩾ds\geqslant d, we obtain the dominant term as N→∞N\to \infty of such constants for a class of dd-rectifiable subsets of Rp\mathbb {R}^p. This class includes compact subsets of dd-dimensional C1C^1 manifolds whose boundary relative to the manifold has dd-dimensional Hausdorff measure zero, as well as finite unions of such sets when their pairwise intersections have measure zero. We also explicitly determine the weak-star limit distribution of asymptotically optimal NN-point configurations for weighted ss-polarization as N→∞N\to \infty.</description><subject>Research article</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j09Lw0AQxRdRMFYPfgAhBy8e0s5mN_vnKMWqUCiInsNmM4GUpgk760E_vVsiHj09hvfjzXuM3XJYcrCwisEdV7os5RnLOBhTKFPBOcsAoCyslfqSXRHt0wnSqIwtd1PsB3fI2558wIj5gI4-A1LejSF_65G-82mMeIy9O9A1u-iS4M2vLtjH5ul9_VJsd8-v68dt4QSvYoG-Q9W1qRBw2XLbqKoxXhlUxnvLdWt147AxQikvpOcltwqEs7oS4LWQYsEe5lwfRqKAXT2FVDN81Rzq09D6NLQ-DU3s3czuKY7hD0y_SwmaJ_9-9t1A_8T8AHmtW1M</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Borodachov, S. V.</creator><creator>Hardin, D. P.</creator><creator>Reznikov, A.</creator><creator>Saff, E. B.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0867-2146</orcidid></search><sort><creationdate>20181001</creationdate><title>Optimal discrete measures for Riesz potentials</title><author>Borodachov, S. V. ; Hardin, D. P. ; Reznikov, A. ; Saff, E. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-ecfe6fd090014d19b65b8c68e68cc917d97baeb8366c34c1219603a97530c7343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borodachov, S. V.</creatorcontrib><creatorcontrib>Hardin, D. P.</creatorcontrib><creatorcontrib>Reznikov, A.</creatorcontrib><creatorcontrib>Saff, E. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borodachov, S. V.</au><au>Hardin, D. P.</au><au>Reznikov, A.</au><au>Saff, E. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal discrete measures for Riesz potentials</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><stitle>Trans. Amer. Math. Soc</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>370</volume><issue>10</issue><spage>6973</spage><epage>6993</epage><pages>6973-6993</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>For weighted Riesz potentials of the form K(x,y)=w(x,y)/K(x,y)=w(x,y)/ |x−y|s|x-y|^s, we investigate NN-point configurations x1,x2,…,xNx_1,x_2, \ldots , x_N on a dd-dimensional compact subset AA of Rp\mathbb {R}^p for which the minimum of ∑j=1NK(x,xj)\sum _{j=1}^NK(x,x_j) on AA is maximal. Such quantities are called NN-point Riesz ss-polarization (or Chebyshev) constants. For s⩾ds\geqslant d, we obtain the dominant term as N→∞N\to \infty of such constants for a class of dd-rectifiable subsets of Rp\mathbb {R}^p. This class includes compact subsets of dd-dimensional C1C^1 manifolds whose boundary relative to the manifold has dd-dimensional Hausdorff measure zero, as well as finite unions of such sets when their pairwise intersections have measure zero. We also explicitly determine the weak-star limit distribution of asymptotically optimal NN-point configurations for weighted ss-polarization as N→∞N\to \infty.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/tran/7224</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0867-2146</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2018-10, Vol.370 (10), p.6973-6993
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_7224
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics
subjects Research article
title Optimal discrete measures for Riesz potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A33%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20discrete%20measures%20for%20Riesz%20potentials&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Borodachov,%20S.%20V.&rft.date=2018-10-01&rft.volume=370&rft.issue=10&rft.spage=6973&rft.epage=6993&rft.pages=6973-6993&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7224&rft_dat=%3Cjstor_cross%3E90024071%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90024071&rfr_iscdi=true