Optimal discrete measures for Riesz potentials

For weighted Riesz potentials of the form K(x,y)=w(x,y)/K(x,y)=w(x,y)/ |x−y|s|x-y|^s, we investigate NN-point configurations x1,x2,…,xNx_1,x_2, \ldots , x_N on a dd-dimensional compact subset AA of Rp\mathbb {R}^p for which the minimum of ∑j=1NK(x,xj)\sum _{j=1}^NK(x,x_j) on AA is maximal. Such quan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2018-10, Vol.370 (10), p.6973-6993
Hauptverfasser: Borodachov, S. V., Hardin, D. P., Reznikov, A., Saff, E. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For weighted Riesz potentials of the form K(x,y)=w(x,y)/K(x,y)=w(x,y)/ |x−y|s|x-y|^s, we investigate NN-point configurations x1,x2,…,xNx_1,x_2, \ldots , x_N on a dd-dimensional compact subset AA of Rp\mathbb {R}^p for which the minimum of ∑j=1NK(x,xj)\sum _{j=1}^NK(x,x_j) on AA is maximal. Such quantities are called NN-point Riesz ss-polarization (or Chebyshev) constants. For s⩾ds\geqslant d, we obtain the dominant term as N→∞N\to \infty of such constants for a class of dd-rectifiable subsets of Rp\mathbb {R}^p. This class includes compact subsets of dd-dimensional C1C^1 manifolds whose boundary relative to the manifold has dd-dimensional Hausdorff measure zero, as well as finite unions of such sets when their pairwise intersections have measure zero. We also explicitly determine the weak-star limit distribution of asymptotically optimal NN-point configurations for weighted ss-polarization as N→∞N\to \infty.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/7224