ON EXTREMIZERS FOR STRICHARTZ ESTIMATES FOR HIGHER ORDER SCHRÖDINGER EQUATIONS

For an appropriate class of convex functions φ, we study the Fourier extension operator on the surface {(y, |y|2 + φ(y)) : y ∈ R2} equipped with projection measure. For the corresponding extension inequality, we compute optimal constants and prove that extremizers do not exist. The main tool is a ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2018-10, Vol.370 (10), p.6871-6907
Hauptverfasser: SILVA, DIOGO OLIVEIRA E, QUILODRÁN, RENÉ
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an appropriate class of convex functions φ, we study the Fourier extension operator on the surface {(y, |y|2 + φ(y)) : y ∈ R2} equipped with projection measure. For the corresponding extension inequality, we compute optimal constants and prove that extremizers do not exist. The main tool is a new comparison principle for convolutions of certain singular measures that holds in all dimensions. Using tools of concentration-compactness flavor, we further investigate the behavior of general extremizing sequences. Our work is directly related to the study of extremizers and optimal constants for Strichartz estimates of certain higher order Schrödinger equations. In particular, we resolve a dichotomy from the recent literature concerning the existence of extremizers for a family of fourth order Schrödinger equations and compute the corresponding operator norms exactly where only lower bounds were previously known.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/7223