NUCLEAR DIMENSION AND CLASSIFICATION OF C-ALGEBRAS ASSOCIATED TO SMALE SPACES
We show that the homoclinic C*-algebras of mixing Smale spaces are classifiable by the Elliott invariant. To obtain this result, we prove that the stable, unstable, and homoclinic C*-algebras associated to such Smale spaces have finite nuclear dimension. Our proof of finite nuclear dimension relies...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2018-05, Vol.370 (5), p.3467-3485 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the homoclinic C*-algebras of mixing Smale spaces are classifiable by the Elliott invariant. To obtain this result, we prove that the stable, unstable, and homoclinic C*-algebras associated to such Smale spaces have finite nuclear dimension. Our proof of finite nuclear dimension relies on Guentner, Willett, and Yu’s notion of dynamic asymptotic dimension. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/7046 |