Marked-length-spectral rigidity for flat metrics

In this paper we prove that the space of flat metrics (nonpositively curved Euclidean cone metrics) on a closed, oriented surface is marked-length-spectrally rigid. In other words, two flat metrics assigning the same lengths to all closed curves differ by an isometry isotopic to the identity. The no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2018-03, Vol.370 (3), p.1867-1884
Hauptverfasser: Bankovic, Anja, Leininger, Christopher J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!