Marked-length-spectral rigidity for flat metrics

In this paper we prove that the space of flat metrics (nonpositively curved Euclidean cone metrics) on a closed, oriented surface is marked-length-spectrally rigid. In other words, two flat metrics assigning the same lengths to all closed curves differ by an isometry isotopic to the identity. The no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2018-03, Vol.370 (3), p.1867-1884
Hauptverfasser: BANKOVIC, ANJA, LEININGER, CHRISTOPHER J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove that the space of flat metrics (nonpositively curved Euclidean cone metrics) on a closed, oriented surface is marked-length-spectrally rigid. In other words, two flat metrics assigning the same lengths to all closed curves differ by an isometry isotopic to the identity. The novel proof suggests a stronger rigidity conjecture for this class of metrics.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/7005