The geometry of purely loxodromic subgroups of right-angled Artin groups
purely loxodromic subgroups of a right-angled Artin group A(\Gamma ) fulfill equivalent conditions that parallel characterizations of convex cocompactness in mapping class groups \mathrm {Mod}(S). In particular, such subgroups are quasiconvex in A(\Gamma ). In addition, we identify a milder conditio...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2017-11, Vol.369 (11), p.8179-8208 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | purely loxodromic subgroups of a right-angled Artin group A(\Gamma ) fulfill equivalent conditions that parallel characterizations of convex cocompactness in mapping class groups \mathrm {Mod}(S). In particular, such subgroups are quasiconvex in A(\Gamma ). In addition, we identify a milder condition for a finitely generated subgroup of A(\Gamma ) that guarantees it is free, undistorted, and retains finite generation when intersected with A(\Lambda ) for subgraphs \Lambda of \Gamma . These results have applications to both the study of convex cocompactness in \mathrm {Mod}(S) and the way in which certain groups can embed in right-angled Artin groups.]]> |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/6933 |