The geometry of purely loxodromic subgroups of right-angled Artin groups

purely loxodromic subgroups of a right-angled Artin group A(\Gamma ) fulfill equivalent conditions that parallel characterizations of convex cocompactness in mapping class groups \mathrm {Mod}(S). In particular, such subgroups are quasiconvex in A(\Gamma ). In addition, we identify a milder conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2017-11, Vol.369 (11), p.8179-8208
Hauptverfasser: KOBERDA, THOMAS, MANGAHAS, JOHANNA, TAYLOR, SAMUEL J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:purely loxodromic subgroups of a right-angled Artin group A(\Gamma ) fulfill equivalent conditions that parallel characterizations of convex cocompactness in mapping class groups \mathrm {Mod}(S). In particular, such subgroups are quasiconvex in A(\Gamma ). In addition, we identify a milder condition for a finitely generated subgroup of A(\Gamma ) that guarantees it is free, undistorted, and retains finite generation when intersected with A(\Lambda ) for subgraphs \Lambda of \Gamma . These results have applications to both the study of convex cocompactness in \mathrm {Mod}(S) and the way in which certain groups can embed in right-angled Artin groups.]]>
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/6933