No local double exponential gradient growth in hyperbolic flow for the 2d Euler equation
We consider smooth, double-odd solutions of the two-dimensional Euler equation in [-1, 1)^2 with periodic boundary conditions. This situation is a possible candidate to exhibit strong gradient growth near the origin. We analyze the flow in a small box around the origin in a strongly hyperbolic regim...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2017-10, Vol.369 (10), p.7169-7211 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7211 |
---|---|
container_issue | 10 |
container_start_page | 7169 |
container_title | Transactions of the American Mathematical Society |
container_volume | 369 |
creator | HOANG, VU RADOSZ, MARIA |
description | We consider smooth, double-odd solutions of the two-dimensional Euler equation in [-1, 1)^2 with periodic boundary conditions. This situation is a possible candidate to exhibit strong gradient growth near the origin. We analyze the flow in a small box around the origin in a strongly hyperbolic regime and prove that the compression of the fluid induced by the hyperbolic flow alone is not sufficient to create double-exponential growth of the gradient. |
doi_str_mv | 10.1090/tran/6900 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_6900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90011760</jstor_id><sourcerecordid>90011760</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-186e9622aaf19b6f744d29f93cfbe4de3fe172130207107affb87cd35639e0133</originalsourceid><addsrcrecordid>eNp9kDFPwzAUhC0EEqUw8AOQPLAwhD7bqR2PqGoBqYIFJLbISZ5pKjcutqvSf0-iIkamd-_u0w1HyDWDewYaJimYbiI1wAkZMSiKTBZTOCUjAOCZ1rk6JxcxrvsX8kKOyMeLp87XxtHG7yqHFL-3vsMutb31GUzT9roXfp9WtO3o6rDFUHnX1tQ6v6fWB5pWSHlD5zuHgeLXzqTWd5fkzBoX8er3jsn7Yv42e8qWr4_Ps4dlZgSbpowVErXk3BjLdCWtyvOGa6tFbSvMGxQWmeJMAAfFQBlrq0LVjZhKoRGYEGNyd-ytg48xoC23od2YcCgZlMMk5TBJOUzSszdHdh2TD39gHzGm5JDfHnOzif_U_ABajGqT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>No local double exponential gradient growth in hyperbolic flow for the 2d Euler equation</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>HOANG, VU ; RADOSZ, MARIA</creator><creatorcontrib>HOANG, VU ; RADOSZ, MARIA</creatorcontrib><description>We consider smooth, double-odd solutions of the two-dimensional Euler equation in [-1, 1)^2 with periodic boundary conditions. This situation is a possible candidate to exhibit strong gradient growth near the origin. We analyze the flow in a small box around the origin in a strongly hyperbolic regime and prove that the compression of the fluid induced by the hyperbolic flow alone is not sufficient to create double-exponential growth of the gradient.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/6900</identifier><language>eng</language><publisher>American Mathematical Society</publisher><ispartof>Transactions of the American Mathematical Society, 2017-10, Vol.369 (10), p.7169-7211</ispartof><rights>Copyright 2017, American Mathematical Society</rights><rights>2017 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-186e9622aaf19b6f744d29f93cfbe4de3fe172130207107affb87cd35639e0133</citedby><cites>FETCH-LOGICAL-a315t-186e9622aaf19b6f744d29f93cfbe4de3fe172130207107affb87cd35639e0133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2017-369-10/S0002-9947-2017-06900-2/S0002-9947-2017-06900-2.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2017-369-10/S0002-9947-2017-06900-2/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,315,781,785,804,833,23329,23333,27929,27930,58022,58026,58255,58259,77841,77843,77851,77853</link.rule.ids></links><search><creatorcontrib>HOANG, VU</creatorcontrib><creatorcontrib>RADOSZ, MARIA</creatorcontrib><title>No local double exponential gradient growth in hyperbolic flow for the 2d Euler equation</title><title>Transactions of the American Mathematical Society</title><description>We consider smooth, double-odd solutions of the two-dimensional Euler equation in [-1, 1)^2 with periodic boundary conditions. This situation is a possible candidate to exhibit strong gradient growth near the origin. We analyze the flow in a small box around the origin in a strongly hyperbolic regime and prove that the compression of the fluid induced by the hyperbolic flow alone is not sufficient to create double-exponential growth of the gradient.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAUhC0EEqUw8AOQPLAwhD7bqR2PqGoBqYIFJLbISZ5pKjcutqvSf0-iIkamd-_u0w1HyDWDewYaJimYbiI1wAkZMSiKTBZTOCUjAOCZ1rk6JxcxrvsX8kKOyMeLp87XxtHG7yqHFL-3vsMutb31GUzT9roXfp9WtO3o6rDFUHnX1tQ6v6fWB5pWSHlD5zuHgeLXzqTWd5fkzBoX8er3jsn7Yv42e8qWr4_Ps4dlZgSbpowVErXk3BjLdCWtyvOGa6tFbSvMGxQWmeJMAAfFQBlrq0LVjZhKoRGYEGNyd-ytg48xoC23od2YcCgZlMMk5TBJOUzSszdHdh2TD39gHzGm5JDfHnOzif_U_ABajGqT</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>HOANG, VU</creator><creator>RADOSZ, MARIA</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171001</creationdate><title>No local double exponential gradient growth in hyperbolic flow for the 2d Euler equation</title><author>HOANG, VU ; RADOSZ, MARIA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-186e9622aaf19b6f744d29f93cfbe4de3fe172130207107affb87cd35639e0133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HOANG, VU</creatorcontrib><creatorcontrib>RADOSZ, MARIA</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HOANG, VU</au><au>RADOSZ, MARIA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No local double exponential gradient growth in hyperbolic flow for the 2d Euler equation</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>369</volume><issue>10</issue><spage>7169</spage><epage>7211</epage><pages>7169-7211</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We consider smooth, double-odd solutions of the two-dimensional Euler equation in [-1, 1)^2 with periodic boundary conditions. This situation is a possible candidate to exhibit strong gradient growth near the origin. We analyze the flow in a small box around the origin in a strongly hyperbolic regime and prove that the compression of the fluid induced by the hyperbolic flow alone is not sufficient to create double-exponential growth of the gradient.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/6900</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2017-10, Vol.369 (10), p.7169-7211 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_crossref_primary_10_1090_tran_6900 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
title | No local double exponential gradient growth in hyperbolic flow for the 2d Euler equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No%20local%20double%20exponential%20gradient%20growth%20in%20hyperbolic%20flow%20for%20the%202d%20Euler%20equation&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=HOANG,%20VU&rft.date=2017-10-01&rft.volume=369&rft.issue=10&rft.spage=7169&rft.epage=7211&rft.pages=7169-7211&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/6900&rft_dat=%3Cjstor_cross%3E90011760%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90011760&rfr_iscdi=true |