No local double exponential gradient growth in hyperbolic flow for the 2d Euler equation
We consider smooth, double-odd solutions of the two-dimensional Euler equation in [-1, 1)^2 with periodic boundary conditions. This situation is a possible candidate to exhibit strong gradient growth near the origin. We analyze the flow in a small box around the origin in a strongly hyperbolic regim...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2017-10, Vol.369 (10), p.7169-7211 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider smooth, double-odd solutions of the two-dimensional Euler equation in [-1, 1)^2 with periodic boundary conditions. This situation is a possible candidate to exhibit strong gradient growth near the origin. We analyze the flow in a small box around the origin in a strongly hyperbolic regime and prove that the compression of the fluid induced by the hyperbolic flow alone is not sufficient to create double-exponential growth of the gradient. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/6900 |