No local double exponential gradient growth in hyperbolic flow for the 2d Euler equation

We consider smooth, double-odd solutions of the two-dimensional Euler equation in [-1, 1)^2 with periodic boundary conditions. This situation is a possible candidate to exhibit strong gradient growth near the origin. We analyze the flow in a small box around the origin in a strongly hyperbolic regim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2017-10, Vol.369 (10), p.7169-7211
Hauptverfasser: HOANG, VU, RADOSZ, MARIA
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider smooth, double-odd solutions of the two-dimensional Euler equation in [-1, 1)^2 with periodic boundary conditions. This situation is a possible candidate to exhibit strong gradient growth near the origin. We analyze the flow in a small box around the origin in a strongly hyperbolic regime and prove that the compression of the fluid induced by the hyperbolic flow alone is not sufficient to create double-exponential growth of the gradient.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/6900