Characterisation theorem for best polynomial spline approximation with free knots
In this paper, we derive a necessary condition for a best approximation by piecewise polynomial functions. We apply nonsmooth nonconvex analysis to obtain this result, which is also a necessary and sufficient condition for inf-stationarity in the sense of Demyanov-Rubinov. We start from identifying...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2017-09, Vol.369 (9), p.6389-6405 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we derive a necessary condition for a best approximation by piecewise polynomial functions. We apply nonsmooth nonconvex analysis to obtain this result, which is also a necessary and sufficient condition for inf-stationarity in the sense of Demyanov-Rubinov. We start from identifying a special property of the knots. Then, using this property, we construct a characterisation theorem for best free-knots polynomial spline approximation, which is stronger than the existing characterisation results, at least in the case when only continuity is required. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/6863 |