Periodic points and the measure of maximal entropy of an expanding Thurston map

In this paper, we show that each expanding Thurston map f:S2→S2f\colon S^2\!\rightarrow S^2 has 1+deg⁡f1+\deg f fixed points, counted with appropriate weight, where deg⁡f\deg f denotes the topological degree of the map ff. We then prove the equidistribution of preimages and of (pre)periodic points w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2016-12, Vol.368 (12), p.8955-8999
1. Verfasser: Li, Zhiqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8999
container_issue 12
container_start_page 8955
container_title Transactions of the American Mathematical Society
container_volume 368
creator Li, Zhiqiang
description In this paper, we show that each expanding Thurston map f:S2→S2f\colon S^2\!\rightarrow S^2 has 1+deg⁡f1+\deg f fixed points, counted with appropriate weight, where deg⁡f\deg f denotes the topological degree of the map ff. We then prove the equidistribution of preimages and of (pre)periodic points with respect to the unique measure of maximal entropy μf\mu _f for ff. We also show that (S2,f,μf)(S^2,f,\mu _f) is a factor of the left shift on the set of one-sided infinite sequences with its measure of maximal entropy, in the category of measure-preserving dynamical systems. Finally, we prove that μf\mu _f is almost surely the weak∗^* limit of atomic probability measures supported on a random backward orbit of an arbitrary point.
doi_str_mv 10.1090/tran/6705
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_tran_6705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>tranamermathsoci.368.12.8955</jstor_id><sourcerecordid>tranamermathsoci.368.12.8955</sourcerecordid><originalsourceid>FETCH-LOGICAL-a335t-e80811b74e84871fc620a022ec249dbf24382df682f7fa17df86bc274efa34dc3</originalsourceid><addsrcrecordid>eNp9kD9rwzAUxEVpoWnaod9AQ5cObiRZluWxhP6DQDqks3iRpcYhloykQPLtK-PSsdPjHr87jkPonpInShqySAHcQtSkukAzSqQshKzIJZoRQljRNLy-Rjcx7rMkXIoZWn-a0Pm203jwnUsRg2tx2hncG4jHYLC3uIdT18MBG5eCH87jCxw2pyGznfvGm90xxORdBodbdGXhEM3d752jr9eXzfK9WK3fPpbPqwLKskqFkURSuq25kVzW1GrBCBDGjGa8abeW8VKy1grJbG2B1q2VYqtZ5i2UvNXlHD1OuTr4GIOxagi5ZDgrStS4hBqXUOMSmaUTu88twx84AtCb0EPaRa87VQqpKFOyqUbPw-SBPv4T_QMlP2_1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Periodic points and the measure of maximal entropy of an expanding Thurston map</title><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Li, Zhiqiang</creator><creatorcontrib>Li, Zhiqiang</creatorcontrib><description>In this paper, we show that each expanding Thurston map f:S2→S2f\colon S^2\!\rightarrow S^2 has 1+deg⁡f1+\deg f fixed points, counted with appropriate weight, where deg⁡f\deg f denotes the topological degree of the map ff. We then prove the equidistribution of preimages and of (pre)periodic points with respect to the unique measure of maximal entropy μf\mu _f for ff. We also show that (S2,f,μf)(S^2,f,\mu _f) is a factor of the left shift on the set of one-sided infinite sequences with its measure of maximal entropy, in the category of measure-preserving dynamical systems. Finally, we prove that μf\mu _f is almost surely the weak∗^* limit of atomic probability measures supported on a random backward orbit of an arbitrary point.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/6705</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Transactions of the American Mathematical Society, 2016-12, Vol.368 (12), p.8955-8999</ispartof><rights>Copyright 2016 American Mathematical Society</rights><rights>2016 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a335t-e80811b74e84871fc620a022ec249dbf24382df682f7fa17df86bc274efa34dc3</citedby><cites>FETCH-LOGICAL-a335t-e80811b74e84871fc620a022ec249dbf24382df682f7fa17df86bc274efa34dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2016-368-12/S0002-9947-2016-06705-7/S0002-9947-2016-06705-7.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2016-368-12/S0002-9947-2016-06705-7/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,776,780,799,828,23303,23307,27901,27902,57992,57996,58225,58229,77579,77581,77589,77591</link.rule.ids></links><search><creatorcontrib>Li, Zhiqiang</creatorcontrib><title>Periodic points and the measure of maximal entropy of an expanding Thurston map</title><title>Transactions of the American Mathematical Society</title><addtitle>Trans. Amer. Math. Soc</addtitle><description>In this paper, we show that each expanding Thurston map f:S2→S2f\colon S^2\!\rightarrow S^2 has 1+deg⁡f1+\deg f fixed points, counted with appropriate weight, where deg⁡f\deg f denotes the topological degree of the map ff. We then prove the equidistribution of preimages and of (pre)periodic points with respect to the unique measure of maximal entropy μf\mu _f for ff. We also show that (S2,f,μf)(S^2,f,\mu _f) is a factor of the left shift on the set of one-sided infinite sequences with its measure of maximal entropy, in the category of measure-preserving dynamical systems. Finally, we prove that μf\mu _f is almost surely the weak∗^* limit of atomic probability measures supported on a random backward orbit of an arbitrary point.</description><subject>Research article</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD9rwzAUxEVpoWnaod9AQ5cObiRZluWxhP6DQDqks3iRpcYhloykQPLtK-PSsdPjHr87jkPonpInShqySAHcQtSkukAzSqQshKzIJZoRQljRNLy-Rjcx7rMkXIoZWn-a0Pm203jwnUsRg2tx2hncG4jHYLC3uIdT18MBG5eCH87jCxw2pyGznfvGm90xxORdBodbdGXhEM3d752jr9eXzfK9WK3fPpbPqwLKskqFkURSuq25kVzW1GrBCBDGjGa8abeW8VKy1grJbG2B1q2VYqtZ5i2UvNXlHD1OuTr4GIOxagi5ZDgrStS4hBqXUOMSmaUTu88twx84AtCb0EPaRa87VQqpKFOyqUbPw-SBPv4T_QMlP2_1</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Li, Zhiqiang</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>Periodic points and the measure of maximal entropy of an expanding Thurston map</title><author>Li, Zhiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a335t-e80811b74e84871fc620a022ec249dbf24382df682f7fa17df86bc274efa34dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiqiang</creatorcontrib><collection>CrossRef</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic points and the measure of maximal entropy of an expanding Thurston map</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><stitle>Trans. Amer. Math. Soc</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>368</volume><issue>12</issue><spage>8955</spage><epage>8999</epage><pages>8955-8999</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>In this paper, we show that each expanding Thurston map f:S2→S2f\colon S^2\!\rightarrow S^2 has 1+deg⁡f1+\deg f fixed points, counted with appropriate weight, where deg⁡f\deg f denotes the topological degree of the map ff. We then prove the equidistribution of preimages and of (pre)periodic points with respect to the unique measure of maximal entropy μf\mu _f for ff. We also show that (S2,f,μf)(S^2,f,\mu _f) is a factor of the left shift on the set of one-sided infinite sequences with its measure of maximal entropy, in the category of measure-preserving dynamical systems. Finally, we prove that μf\mu _f is almost surely the weak∗^* limit of atomic probability measures supported on a random backward orbit of an arbitrary point.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/tran/6705</doi><tpages>45</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9947
ispartof Transactions of the American Mathematical Society, 2016-12, Vol.368 (12), p.8955-8999
issn 0002-9947
1088-6850
language eng
recordid cdi_crossref_primary_10_1090_tran_6705
source Jstor Complete Legacy; American Mathematical Society Publications; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics
subjects Research article
title Periodic points and the measure of maximal entropy of an expanding Thurston map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20points%20and%20the%20measure%20of%20maximal%20entropy%20of%20an%20expanding%20Thurston%20map&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Li,%20Zhiqiang&rft.date=2016-12-01&rft.volume=368&rft.issue=12&rft.spage=8955&rft.epage=8999&rft.pages=8955-8999&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/6705&rft_dat=%3Cjstor_cross%3Etranamermathsoci.368.12.8955%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=tranamermathsoci.368.12.8955&rfr_iscdi=true