Periodic points and the measure of maximal entropy of an expanding Thurston map
In this paper, we show that each expanding Thurston map f:S2→S2f\colon S^2\!\rightarrow S^2 has 1+degf1+\deg f fixed points, counted with appropriate weight, where degf\deg f denotes the topological degree of the map ff. We then prove the equidistribution of preimages and of (pre)periodic points w...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2016-12, Vol.368 (12), p.8955-8999 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we show that each expanding Thurston map f:S2→S2f\colon S^2\!\rightarrow S^2 has 1+degf1+\deg f fixed points, counted with appropriate weight, where degf\deg f denotes the topological degree of the map ff. We then prove the equidistribution of preimages and of (pre)periodic points with respect to the unique measure of maximal entropy μf\mu _f for ff. We also show that (S2,f,μf)(S^2,f,\mu _f) is a factor of the left shift on the set of one-sided infinite sequences with its measure of maximal entropy, in the category of measure-preserving dynamical systems. Finally, we prove that μf\mu _f is almost surely the weak∗^* limit of atomic probability measures supported on a random backward orbit of an arbitrary point. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/6705 |