Gauged Hamiltonian Floer homology I: Definition of the Floer homology groups
We construct the vortex Floer homology group VHF(M,μ;H)VHF\left ( M, \mu ; H\right ) for an aspherical Hamiltonian GG-manifold (M,ω,μ)(M, \omega , \mu ) and a class of GG-invariant Hamiltonian loops HtH_t, following a proposal of Cieliebak, Gaio, and Salamon (2000). This is a substitute for the ordi...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2016-04, Vol.368 (4), p.2967-3015 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct the vortex Floer homology group VHF(M,μ;H)VHF\left ( M, \mu ; H\right ) for an aspherical Hamiltonian GG-manifold (M,ω,μ)(M, \omega , \mu ) and a class of GG-invariant Hamiltonian loops HtH_t, following a proposal of Cieliebak, Gaio, and Salamon (2000). This is a substitute for the ordinary Hamiltonian Floer homology of the symplectic quotient of MM. The equation for connecting orbits is a perturbed symplectic vortex equation on the cylinder R×S1\mathbb {R} \times S^1. We achieve the transversality of the moduli space by the classical perturbation argument instead of the virtual technique, so the homology can be defined over Z\mathbb {Z}. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/6643 |