V-filtrations in positive characteristic and test modules
éé If \mathfrak{a} = (f) defines a smooth hypersurface and R is in addition smooth, then for a Cartier crystal corresponding to a locally constant sheaf on \operatorname {Spec} R_{\acute {e}t} the functor Gr^{[0,1]} corresponds, up to a shift, to i^!, where i: V(\mathfrak{a}) \to \operatorname {Spec...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2016-11, Vol.368 (11), p.7777-7808 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | éé If \mathfrak{a} = (f) defines a smooth hypersurface and R is in addition smooth, then for a Cartier crystal corresponding to a locally constant sheaf on \operatorname {Spec} R_{\acute {e}t} the functor Gr^{[0,1]} corresponds, up to a shift, to i^!, where i: V(\mathfrak{a}) \to \operatorname {Spec} R is the closed immersion.]]> |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/6632 |