On the (co)homology of the poset of weighted partitions

We consider the poset of weighted partitions \Pi _n^w provide a generalization of the lattice \Pi _n. In particular, we prove these intervals are EL-shellable, we show that the Möbius invariant of each maximal interval is given up to sign by the number of rooted trees on node set \{1,2,\dots ,n\} \m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2016-10, Vol.368 (10), p.6779-6818
Hauptverfasser: González D’León, Rafael S., Wachs, Michelle L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the poset of weighted partitions \Pi _n^w provide a generalization of the lattice \Pi _n. In particular, we prove these intervals are EL-shellable, we show that the Möbius invariant of each maximal interval is given up to sign by the number of rooted trees on node set \{1,2,\dots ,n\} \mathfrak{S}_n has a nice factorization analogous to that of .
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/6483