Bellman function for extremal problems in BMO
We develop a general method for obtaining sharp integral estimates on BMO. Each such estimate gives rise to a Bellman function, and we show that for a large class of integral functionals, this function is a solution of a homogeneous Monge–Ampère boundary-value problem on a parabolic plane domain. Fu...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2016-05, Vol.368 (5), p.3415-3468 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a general method for obtaining sharp integral estimates on BMO. Each such estimate gives rise to a Bellman function, and we show that for a large class of integral functionals, this function is a solution of a homogeneous Monge–Ampère boundary-value problem on a parabolic plane domain. Furthermore, we elaborate an essentially geometric algorithm for solving this boundary-value problem. This algorithm produces the exact Bellman function of the problem along with the optimizers in the inequalities being proved. The method presented subsumes several previous Bellman-function results for BMO, including the sharp John–Nirenberg inequality and sharp estimates of Lp
-norms of BMO functions.
2010 Mathematics Subject Classification. Primary 42A05, 42B35, 49K20. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/6460 |