Bellman function for extremal problems in BMO

We develop a general method for obtaining sharp integral estimates on BMO. Each such estimate gives rise to a Bellman function, and we show that for a large class of integral functionals, this function is a solution of a homogeneous Monge–Ampère boundary-value problem on a parabolic plane domain. Fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2016-05, Vol.368 (5), p.3415-3468
Hauptverfasser: Ivanisvili, Paata, Osipov, Nikolay N., Stolyarov, Dmitriy M., Vasyunin, Vasily I., Zatitskiy, Pavel B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a general method for obtaining sharp integral estimates on BMO. Each such estimate gives rise to a Bellman function, and we show that for a large class of integral functionals, this function is a solution of a homogeneous Monge–Ampère boundary-value problem on a parabolic plane domain. Furthermore, we elaborate an essentially geometric algorithm for solving this boundary-value problem. This algorithm produces the exact Bellman function of the problem along with the optimizers in the inequalities being proved. The method presented subsumes several previous Bellman-function results for BMO, including the sharp John–Nirenberg inequality and sharp estimates of Lp -norms of BMO functions. 2010 Mathematics Subject Classification. Primary 42A05, 42B35, 49K20.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/6460