A random walk on a non-intersecting two-sided random walk trace is subdiffusive in low dimensions

Let (\overline {S}^{1}, \overline {S}^{2}) be the two-sided random walks in \mathbb{Z}^{d} \ (d=2,3) conditioned so that \overline {S}^{1}[0,\infty ) \cap \overline {S}^{2}[1, \infty ) = \emptyset , which was constructed by the author in 2012. We prove that the number of global cut times up to n gro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2018-07, Vol.370 (7), p.4525-4558
1. Verfasser: SHIRAISHI, DAISUKE
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let (\overline {S}^{1}, \overline {S}^{2}) be the two-sided random walks in \mathbb{Z}^{d} \ (d=2,3) conditioned so that \overline {S}^{1}[0,\infty ) \cap \overline {S}^{2}[1, \infty ) = \emptyset , which was constructed by the author in 2012. We prove that the number of global cut times up to n grows like n^{\frac {3}{8}} for d=2. In particular, we show that each \overline {S}^{i} has infinitely many global cut times with probability one. Using this property, we prove that the simple random walk on \overline {S}^{1}[0,\infty ) \cup \overline {S}^{2}[0,\infty ) is subdiffusive for d=2. We show the same result for d=3.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/5737