The concavity of the payoff function of a swing option in a binomial model

We use the lattice method to price a swing option. We show that the payoff function at each node of the lattice is concave and piecewise linear. A corollary of this result is that there exists a bang-bang control such that if the loan at a certain moment is integer, then the optimal purchased quanti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of probability and mathematical statistics 2015, Vol.91, p.81-92
Hauptverfasser: Kulikov, A. V., Malykh, N. O.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use the lattice method to price a swing option. We show that the payoff function at each node of the lattice is concave and piecewise linear. A corollary of this result is that there exists a bang-bang control such that if the loan at a certain moment is integer, then the optimal purchased quantity at this moment is equal to either 0 or 1. If the loan at a certain moment is not integer, then the fair price is a convex combination of the nearest pay-off values with integer loans.
ISSN:0094-9000
1547-7363
DOI:10.1090/tpms/968