The concavity of the payoff function of a swing option in a binomial model
We use the lattice method to price a swing option. We show that the payoff function at each node of the lattice is concave and piecewise linear. A corollary of this result is that there exists a bang-bang control such that if the loan at a certain moment is integer, then the optimal purchased quanti...
Gespeichert in:
Veröffentlicht in: | Theory of probability and mathematical statistics 2015, Vol.91, p.81-92 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use the lattice method to price a swing option. We show that the payoff function at each node of the lattice is concave and piecewise linear. A corollary of this result is that there exists a bang-bang control such that if the loan at a certain moment is integer, then the optimal purchased quantity at this moment is equal to either 0 or 1. If the loan at a certain moment is not integer, then the fair price is a convex combination of the nearest pay-off values with integer loans. |
---|---|
ISSN: | 0094-9000 1547-7363 |
DOI: | 10.1090/tpms/968 |