On the chromatic number of an infinitesimal plane layer
This paper is devoted to a natural generalization of the problem on the chromatic number of the plane. The chromatic number of the spaces Rn×[0,ε]k\mathbb {R}^n \times [0,\varepsilon ]^k is considered. It is proved that 5≤χ(R2×[0,ε])≤75 \leq \chi (\mathbb {R}^2\times [0,\varepsilon ])\leq 7 and 6≤χ(...
Gespeichert in:
Veröffentlicht in: | St. Petersburg mathematical journal 2018-07, Vol.29 (5), p.761-775 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is devoted to a natural generalization of the problem on the chromatic number of the plane. The chromatic number of the spaces Rn×[0,ε]k\mathbb {R}^n \times [0,\varepsilon ]^k is considered. It is proved that 5≤χ(R2×[0,ε])≤75 \leq \chi (\mathbb {R}^2\times [0,\varepsilon ])\leq 7 and 6≤χ(R2×[0,ε]2)≤7{6\leq \chi (\mathbb {R}^2\times [0,\varepsilon ]^2) \leq 7} for ε>0\varepsilon >0 sufficiently small. Also, some natural questions arising from these considerations are posed. |
---|---|
ISSN: | 1061-0022 1547-7371 |
DOI: | 10.1090/spmj/1515 |