On the chromatic number of an infinitesimal plane layer

This paper is devoted to a natural generalization of the problem on the chromatic number of the plane. The chromatic number of the spaces Rn×[0,ε]k\mathbb {R}^n \times [0,\varepsilon ]^k is considered. It is proved that 5≤χ(R2×[0,ε])≤75 \leq \chi (\mathbb {R}^2\times [0,\varepsilon ])\leq 7 and 6≤χ(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:St. Petersburg mathematical journal 2018-07, Vol.29 (5), p.761-775
Hauptverfasser: Kanel-Belov, A. Ya, Voronov, V. A., Cherkashin, D. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to a natural generalization of the problem on the chromatic number of the plane. The chromatic number of the spaces Rn×[0,ε]k\mathbb {R}^n \times [0,\varepsilon ]^k is considered. It is proved that 5≤χ(R2×[0,ε])≤75 \leq \chi (\mathbb {R}^2\times [0,\varepsilon ])\leq 7 and 6≤χ(R2×[0,ε]2)≤7{6\leq \chi (\mathbb {R}^2\times [0,\varepsilon ]^2) \leq 7} for ε>0\varepsilon >0 sufficiently small. Also, some natural questions arising from these considerations are posed.
ISSN:1061-0022
1547-7371
DOI:10.1090/spmj/1515