Conic injectivity sets for the Radon transformation on spheres

The problem under study concerns description of nonzero functions that have zero integrals over all spheres with centers in a given set. For the corresponding integral transformation (Radon transformation on spheres), the kernel is described, and sharp uniqueness theorems are obtained. Applications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:St. Petersburg mathematical journal 2016-10, Vol.27 (5), p.709-730
Hauptverfasser: Volchkov, V. V., Volchkov, Vit. V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem under study concerns description of nonzero functions that have zero integrals over all spheres with centers in a given set. For the corresponding integral transformation (Radon transformation on spheres), the kernel is described, and sharp uniqueness theorems are obtained. Applications of the main results to partial differential equations are considered: new uniqueness theorems are proved for the Darboux equation and the wave equation.
ISSN:1061-0022
1547-7371
DOI:10.1090/spmj/1413