On a quaternary nonlocal isoperimetric problem

We study a two-dimensional quaternary inhibitory system. This free energy functional combines an interface energy favoring micro-domain growth with a Coulomb-type long range interaction energy which prevents micro-domains from unlimited spreading. Here we consider a limit in which three species are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly of applied mathematics 2024-03, Vol.82 (1), p.97-113
Hauptverfasser: Alama, Stanley, Bronsard, Lia, Lu, Xinyang, Wang, Chong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a two-dimensional quaternary inhibitory system. This free energy functional combines an interface energy favoring micro-domain growth with a Coulomb-type long range interaction energy which prevents micro-domains from unlimited spreading. Here we consider a limit in which three species are vanishingly small, but interactions are correspondingly large to maintain a nontrivial limit. In this limit two energy levels are distinguished: the highest order limit encodes information on the geometry of local structures as a three-component isoperimetric problem, while the second level describes the spatial distribution of components in global minimizers. Geometrical descriptions of limit configurations are derived.
ISSN:0033-569X
1552-4485
DOI:10.1090/qam/1675