Hyper-elastic Ricci flow: Gradient flow, local existence-uniqueness, and a Perelman energy functional
The equation of hyper-elastic Ricci flow amends classical Ricci flow by the addition of the Cauchy stress tensor which itself is derived from the a free energy. In this paper hyper-elastic Ricci flow is shown to possess three properties derived by G. Perelman for classical Ricci flow, specifically i...
Gespeichert in:
Veröffentlicht in: | Quarterly of applied mathematics 2023-12, Vol.81 (4), p.599-613 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 613 |
---|---|
container_issue | 4 |
container_start_page | 599 |
container_title | Quarterly of applied mathematics |
container_volume | 81 |
creator | Slemrod, Marshall |
description | The equation of hyper-elastic Ricci flow amends classical Ricci flow by the addition of the Cauchy stress tensor which itself is derived from the a free energy. In this paper hyper-elastic Ricci flow is shown to possess three properties derived by G. Perelman for classical Ricci flow, specifically it is diffeomorphically equivalent to a gradient flow, unique smooth solutions exist locally in time, and the system possesses a non-decreasing energy function. |
doi_str_mv | 10.1090/qam/1643 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_qam_1643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_qam_1643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-725065f3238b9f92572ff4afc397bc69d406bf10fa9692cccde62955c7c67b703</originalsourceid><addsrcrecordid>eNotkMFKAzEURYMoWKvgJ2TporGZZJJp3EmxrVBQRMHdkHnzIpE00yZTtH_vVF1dzr1wF4eQ64LfFtzw6c5upoUu5QkZFUoJVpYzdUpGnEvJlDbv5-Qi588Bh5WPCK4OW0wMg829B_riATx1ofu6o8tkW4-x_8UJDR3YQPHb5x4jINtHv9tjxJwn1MaWWvqMCcPGRjq06eNA3T5C77towyU5czZkvPrPMXlbPLzOV2z9tHyc368ZCCF6VgnFtXJSyFljnBGqEs6V1oE0VQPatCXXjSu4s0YbAQAtamGUggp01VRcjsnN3y-kLueErt4mv7HpUBe8PuqpBz31UY_8AeblWVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hyper-elastic Ricci flow: Gradient flow, local existence-uniqueness, and a Perelman energy functional</title><source>American Mathematical Society Publications</source><creator>Slemrod, Marshall</creator><creatorcontrib>Slemrod, Marshall</creatorcontrib><description>The equation of hyper-elastic Ricci flow amends classical Ricci flow by the addition of the Cauchy stress tensor which itself is derived from the a free energy. In this paper hyper-elastic Ricci flow is shown to possess three properties derived by G. Perelman for classical Ricci flow, specifically it is diffeomorphically equivalent to a gradient flow, unique smooth solutions exist locally in time, and the system possesses a non-decreasing energy function.</description><identifier>ISSN: 0033-569X</identifier><identifier>EISSN: 1552-4485</identifier><identifier>DOI: 10.1090/qam/1643</identifier><language>eng</language><ispartof>Quarterly of applied mathematics, 2023-12, Vol.81 (4), p.599-613</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c222t-725065f3238b9f92572ff4afc397bc69d406bf10fa9692cccde62955c7c67b703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Slemrod, Marshall</creatorcontrib><title>Hyper-elastic Ricci flow: Gradient flow, local existence-uniqueness, and a Perelman energy functional</title><title>Quarterly of applied mathematics</title><description>The equation of hyper-elastic Ricci flow amends classical Ricci flow by the addition of the Cauchy stress tensor which itself is derived from the a free energy. In this paper hyper-elastic Ricci flow is shown to possess three properties derived by G. Perelman for classical Ricci flow, specifically it is diffeomorphically equivalent to a gradient flow, unique smooth solutions exist locally in time, and the system possesses a non-decreasing energy function.</description><issn>0033-569X</issn><issn>1552-4485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotkMFKAzEURYMoWKvgJ2TporGZZJJp3EmxrVBQRMHdkHnzIpE00yZTtH_vVF1dzr1wF4eQ64LfFtzw6c5upoUu5QkZFUoJVpYzdUpGnEvJlDbv5-Qi588Bh5WPCK4OW0wMg829B_riATx1ofu6o8tkW4-x_8UJDR3YQPHb5x4jINtHv9tjxJwn1MaWWvqMCcPGRjq06eNA3T5C77towyU5czZkvPrPMXlbPLzOV2z9tHyc368ZCCF6VgnFtXJSyFljnBGqEs6V1oE0VQPatCXXjSu4s0YbAQAtamGUggp01VRcjsnN3y-kLueErt4mv7HpUBe8PuqpBz31UY_8AeblWVQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Slemrod, Marshall</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Hyper-elastic Ricci flow: Gradient flow, local existence-uniqueness, and a Perelman energy functional</title><author>Slemrod, Marshall</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-725065f3238b9f92572ff4afc397bc69d406bf10fa9692cccde62955c7c67b703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slemrod, Marshall</creatorcontrib><collection>CrossRef</collection><jtitle>Quarterly of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slemrod, Marshall</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyper-elastic Ricci flow: Gradient flow, local existence-uniqueness, and a Perelman energy functional</atitle><jtitle>Quarterly of applied mathematics</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>81</volume><issue>4</issue><spage>599</spage><epage>613</epage><pages>599-613</pages><issn>0033-569X</issn><eissn>1552-4485</eissn><abstract>The equation of hyper-elastic Ricci flow amends classical Ricci flow by the addition of the Cauchy stress tensor which itself is derived from the a free energy. In this paper hyper-elastic Ricci flow is shown to possess three properties derived by G. Perelman for classical Ricci flow, specifically it is diffeomorphically equivalent to a gradient flow, unique smooth solutions exist locally in time, and the system possesses a non-decreasing energy function.</abstract><doi>10.1090/qam/1643</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-569X |
ispartof | Quarterly of applied mathematics, 2023-12, Vol.81 (4), p.599-613 |
issn | 0033-569X 1552-4485 |
language | eng |
recordid | cdi_crossref_primary_10_1090_qam_1643 |
source | American Mathematical Society Publications |
title | Hyper-elastic Ricci flow: Gradient flow, local existence-uniqueness, and a Perelman energy functional |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyper-elastic%20Ricci%20flow:%20Gradient%20flow,%20local%20existence-uniqueness,%20and%20a%20Perelman%20energy%20functional&rft.jtitle=Quarterly%20of%20applied%20mathematics&rft.au=Slemrod,%20Marshall&rft.date=2023-12-01&rft.volume=81&rft.issue=4&rft.spage=599&rft.epage=613&rft.pages=599-613&rft.issn=0033-569X&rft.eissn=1552-4485&rft_id=info:doi/10.1090/qam/1643&rft_dat=%3Ccrossref%3E10_1090_qam_1643%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |