Hyper-elastic Ricci flow: Gradient flow, local existence-uniqueness, and a Perelman energy functional

The equation of hyper-elastic Ricci flow amends classical Ricci flow by the addition of the Cauchy stress tensor which itself is derived from the a free energy. In this paper hyper-elastic Ricci flow is shown to possess three properties derived by G. Perelman for classical Ricci flow, specifically i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly of applied mathematics 2023-12, Vol.81 (4), p.599-613
1. Verfasser: Slemrod, Marshall
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The equation of hyper-elastic Ricci flow amends classical Ricci flow by the addition of the Cauchy stress tensor which itself is derived from the a free energy. In this paper hyper-elastic Ricci flow is shown to possess three properties derived by G. Perelman for classical Ricci flow, specifically it is diffeomorphically equivalent to a gradient flow, unique smooth solutions exist locally in time, and the system possesses a non-decreasing energy function.
ISSN:0033-569X
1552-4485
DOI:10.1090/qam/1643