The conjugate gradient algorithm on a general class of spiked covariance matrices

We consider the conjugate gradient algorithm applied to a general class of spiked sample covariance matrices. The main result of the paper is that the norms of the error and residual vectors at any finite step concentrate on deterministic values determined by orthogonal polynomials with respect to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly of applied mathematics 2022-03, Vol.80 (1), p.99-155
Hauptverfasser: Ding, Xiucai, Trogdon, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the conjugate gradient algorithm applied to a general class of spiked sample covariance matrices. The main result of the paper is that the norms of the error and residual vectors at any finite step concentrate on deterministic values determined by orthogonal polynomials with respect to a deformed Marchenko–Pastur law. The first-order limits and fluctuations are shown to be universal. Additionally, for the case where the bulk eigenvalues lie in a single interval we show a stronger universality result in that the asymptotic rate of convergence of the conjugate gradient algorithm only depends on the support of the bulk, provided the spikes are well-separated from the bulk. In particular, this shows that the classical condition number bound for the conjugate gradient algorithm is pessimistic for spiked matrices.
ISSN:0033-569X
1552-4485
DOI:10.1090/qam/1605