Stream functions for divergence-free vector fields

In 1990, von Wahl and, independently, Borchers and Sohr showed that a divergence-free vector field uu in a 3D bounded domain that is tangential to the boundary can be written as the curl of a vector field vanishing on the boundary of the domain. We extend this result to higher dimension and to Lipsc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly of applied mathematics 2021-03, Vol.79 (1), p.163-174
1. Verfasser: Kelliher, James P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1990, von Wahl and, independently, Borchers and Sohr showed that a divergence-free vector field uu in a 3D bounded domain that is tangential to the boundary can be written as the curl of a vector field vanishing on the boundary of the domain. We extend this result to higher dimension and to Lipschitz boundaries in a form suitable for integration in flat space, showing that uu can be written as the divergence of an antisymmetric matrix field. We also demonstrate how obtaining a kernel for such a matrix field is dual to obtaining a Biot-Savart kernel for the domain.
ISSN:0033-569X
1552-4485
DOI:10.1090/qam/1575