A note on Hilbert 16th problem
Let H ( n ) \mathcal {H}(n) be the maximum number of limit cycles that a planar polynomial vector field of degree n n can have. In this paper we prove that H ( n ) \mathcal {H}(n) is realizable by structurally stable vector fields with only hyperbolic limit cycles and that it is a strictly increasin...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2024-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let H ( n ) \mathcal {H}(n) be the maximum number of limit cycles that a planar polynomial vector field of degree n n can have. In this paper we prove that H ( n ) \mathcal {H}(n) is realizable by structurally stable vector fields with only hyperbolic limit cycles and that it is a strictly increasing function whenever it is finite. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/17116 |