A note on Hilbert 16th problem

Let H ( n ) \mathcal {H}(n) be the maximum number of limit cycles that a planar polynomial vector field of degree n n can have. In this paper we prove that H ( n ) \mathcal {H}(n) is realizable by structurally stable vector fields with only hyperbolic limit cycles and that it is a strictly increasin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2024-12
Hauptverfasser: Gasull, Armengol, Santana, Paulo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H ( n ) \mathcal {H}(n) be the maximum number of limit cycles that a planar polynomial vector field of degree n n can have. In this paper we prove that H ( n ) \mathcal {H}(n) is realizable by structurally stable vector fields with only hyperbolic limit cycles and that it is a strictly increasing function whenever it is finite.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/17116