On flat manifold bundles and the connectivity of Haefliger’s classifying spaces
We investigate a conjecture due to Haefliger and Thurston in the context of foliated manifold bundles. In this context, Haefliger-Thurston’s conjecture predicts that every M M -bundle over a manifold B B where dim ( B ) ≤ dim ( M ) \operatorname {dim}(B)\leq \operatorname {dim}(M) is cobordant t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2024-11, Vol.152 (11), p.4943-4957 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4957 |
---|---|
container_issue | 11 |
container_start_page | 4943 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 152 |
creator | Nariman, Sam |
description | We investigate a conjecture due to Haefliger and Thurston in the context of foliated manifold bundles. In this context, Haefliger-Thurston’s conjecture predicts that every
M
M
-bundle over a manifold
B
B
where
dim
(
B
)
≤
dim
(
M
)
\operatorname {dim}(B)\leq \operatorname {dim}(M)
is cobordant to a flat
M
M
-bundle. In particular, we study the bordism class of flat
M
M
-bundles over low dimensional manifolds, comparing a finite dimensional Lie group
G
G
with
D
i
f
f
0
(
G
)
\mathrm {Diff}_0(G)
. |
doi_str_mv | 10.1090/proc/16941 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_16941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_16941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c120t-3e0dd7c7e2441dd03ce1d4187987929a091abac9c2050b685607b724e55a9d683</originalsourceid><addsrcrecordid>eNot0MtKAzEYBeAgCo7VjU-QtTD2TyaTy1KKWqFQBF0PmVxqJM2UZBRm52v4ej5JWxUOHM7mLD6ErgncElAw3-XBzAlXjJygioCUNZeUn6IKAGitVKPO0UUp74dJFBMVel4n7KMe8Van4Idocf-RbHQF62Tx-OawGVJyZgyfYZzw4PFSOx_DxuWfr--CTdSlBD-FtMFlp40rl-jM61jc1X_P0OvD_ctiWa_Wj0-Lu1VtCIWxbhxYK4xwlDFiLTTGEcuIFOoQqjQoonttlKHQQs9ly0H0gjLXtlpZLpsZuvn7NXkoJTvf7XLY6jx1BLojRnfE6H4xmj1DvVP1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On flat manifold bundles and the connectivity of Haefliger’s classifying spaces</title><source>American Mathematical Society Publications</source><creator>Nariman, Sam</creator><creatorcontrib>Nariman, Sam</creatorcontrib><description>We investigate a conjecture due to Haefliger and Thurston in the context of foliated manifold bundles. In this context, Haefliger-Thurston’s conjecture predicts that every
M
M
-bundle over a manifold
B
B
where
dim
(
B
)
≤
dim
(
M
)
\operatorname {dim}(B)\leq \operatorname {dim}(M)
is cobordant to a flat
M
M
-bundle. In particular, we study the bordism class of flat
M
M
-bundles over low dimensional manifolds, comparing a finite dimensional Lie group
G
G
with
D
i
f
f
0
(
G
)
\mathrm {Diff}_0(G)
.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/16941</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2024-11, Vol.152 (11), p.4943-4957</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c120t-3e0dd7c7e2441dd03ce1d4187987929a091abac9c2050b685607b724e55a9d683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Nariman, Sam</creatorcontrib><title>On flat manifold bundles and the connectivity of Haefliger’s classifying spaces</title><title>Proceedings of the American Mathematical Society</title><description>We investigate a conjecture due to Haefliger and Thurston in the context of foliated manifold bundles. In this context, Haefliger-Thurston’s conjecture predicts that every
M
M
-bundle over a manifold
B
B
where
dim
(
B
)
≤
dim
(
M
)
\operatorname {dim}(B)\leq \operatorname {dim}(M)
is cobordant to a flat
M
M
-bundle. In particular, we study the bordism class of flat
M
M
-bundles over low dimensional manifolds, comparing a finite dimensional Lie group
G
G
with
D
i
f
f
0
(
G
)
\mathrm {Diff}_0(G)
.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNot0MtKAzEYBeAgCo7VjU-QtTD2TyaTy1KKWqFQBF0PmVxqJM2UZBRm52v4ej5JWxUOHM7mLD6ErgncElAw3-XBzAlXjJygioCUNZeUn6IKAGitVKPO0UUp74dJFBMVel4n7KMe8Van4Idocf-RbHQF62Tx-OawGVJyZgyfYZzw4PFSOx_DxuWfr--CTdSlBD-FtMFlp40rl-jM61jc1X_P0OvD_ctiWa_Wj0-Lu1VtCIWxbhxYK4xwlDFiLTTGEcuIFOoQqjQoonttlKHQQs9ly0H0gjLXtlpZLpsZuvn7NXkoJTvf7XLY6jx1BLojRnfE6H4xmj1DvVP1</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Nariman, Sam</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202411</creationdate><title>On flat manifold bundles and the connectivity of Haefliger’s classifying spaces</title><author>Nariman, Sam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c120t-3e0dd7c7e2441dd03ce1d4187987929a091abac9c2050b685607b724e55a9d683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nariman, Sam</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nariman, Sam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On flat manifold bundles and the connectivity of Haefliger’s classifying spaces</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2024-11</date><risdate>2024</risdate><volume>152</volume><issue>11</issue><spage>4943</spage><epage>4957</epage><pages>4943-4957</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We investigate a conjecture due to Haefliger and Thurston in the context of foliated manifold bundles. In this context, Haefliger-Thurston’s conjecture predicts that every
M
M
-bundle over a manifold
B
B
where
dim
(
B
)
≤
dim
(
M
)
\operatorname {dim}(B)\leq \operatorname {dim}(M)
is cobordant to a flat
M
M
-bundle. In particular, we study the bordism class of flat
M
M
-bundles over low dimensional manifolds, comparing a finite dimensional Lie group
G
G
with
D
i
f
f
0
(
G
)
\mathrm {Diff}_0(G)
.</abstract><doi>10.1090/proc/16941</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2024-11, Vol.152 (11), p.4943-4957 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_crossref_primary_10_1090_proc_16941 |
source | American Mathematical Society Publications |
title | On flat manifold bundles and the connectivity of Haefliger’s classifying spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20flat%20manifold%20bundles%20and%20the%20connectivity%20of%20Haefliger%E2%80%99s%20classifying%20spaces&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Nariman,%20Sam&rft.date=2024-11&rft.volume=152&rft.issue=11&rft.spage=4943&rft.epage=4957&rft.pages=4943-4957&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/16941&rft_dat=%3Ccrossref%3E10_1090_proc_16941%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |