On flat manifold bundles and the connectivity of Haefliger’s classifying spaces
We investigate a conjecture due to Haefliger and Thurston in the context of foliated manifold bundles. In this context, Haefliger-Thurston’s conjecture predicts that every M M -bundle over a manifold B B where dim ( B ) ≤ dim ( M ) \operatorname {dim}(B)\leq \operatorname {dim}(M) is cobordant t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2024-11, Vol.152 (11), p.4943-4957 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate a conjecture due to Haefliger and Thurston in the context of foliated manifold bundles. In this context, Haefliger-Thurston’s conjecture predicts that every
M
M
-bundle over a manifold
B
B
where
dim
(
B
)
≤
dim
(
M
)
\operatorname {dim}(B)\leq \operatorname {dim}(M)
is cobordant to a flat
M
M
-bundle. In particular, we study the bordism class of flat
M
M
-bundles over low dimensional manifolds, comparing a finite dimensional Lie group
G
G
with
D
i
f
f
0
(
G
)
\mathrm {Diff}_0(G)
. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16941 |