On a fixed point formula of Navarro–Rizo
Let G be a \pi -separable group with a Hall \pi -subgroup H or order n. For x\in H let \lambda (x) be the number of Hall \pi -subgroups of G containing x. We show that \prod _{d\mid n}\prod _{x\in H}\lambda (x^{d})^{\frac{n}{d}\mu (d)}=1, where \mu is the Möbius function. This generalizes fixed poin...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2024-07, Vol.152 (9), p.3629-3634 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a \pi -separable group with a Hall \pi -subgroup H or order n. For x\in H let \lambda (x) be the number of Hall \pi -subgroups of G containing x. We show that \prod _{d\mid n}\prod _{x\in H}\lambda (x^{d})^{\frac{n}{d}\mu (d)}=1, where \mu is the Möbius function. This generalizes fixed point formulas for coprime actions by Brauer, Wielandt and Navarro–Rizo. We further investigate an additive version of this formula. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16936 |