On a fixed point formula of Navarro–Rizo

Let G be a \pi -separable group with a Hall \pi -subgroup H or order n. For x\in H let \lambda (x) be the number of Hall \pi -subgroups of G containing x. We show that \prod _{d\mid n}\prod _{x\in H}\lambda (x^{d})^{\frac{n}{d}\mu (d)}=1, where \mu is the Möbius function. This generalizes fixed poin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2024-07, Vol.152 (9), p.3629-3634
1. Verfasser: Sambale, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a \pi -separable group with a Hall \pi -subgroup H or order n. For x\in H let \lambda (x) be the number of Hall \pi -subgroups of G containing x. We show that \prod _{d\mid n}\prod _{x\in H}\lambda (x^{d})^{\frac{n}{d}\mu (d)}=1, where \mu is the Möbius function. This generalizes fixed point formulas for coprime actions by Brauer, Wielandt and Navarro–Rizo. We further investigate an additive version of this formula.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/16936