Atomicity of Boolean algebras and vector lattices in terms of order convergence

We prove that order convergence on a Boolean algebra turns it into a compact convergence space if and only if this Boolean algebra is complete and atomic. We also show that on an Archimedean vector lattice, order intervals are compact with respect to order convergence if and only the vector lattice...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2024-08, Vol.152 (8), p.3275-3287
Hauptverfasser: Avilés, Antonio, Bilokopytov, Eugene, Troitsky, Vladimir
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that order convergence on a Boolean algebra turns it into a compact convergence space if and only if this Boolean algebra is complete and atomic. We also show that on an Archimedean vector lattice, order intervals are compact with respect to order convergence if and only the vector lattice is complete and atomic. Additionally we provide a direct proof of the fact that uo convergence on an Archimedean vector lattice is induced by a topology if and only if the vector lattice is atomic.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/16855