Two criteria for quasihomogeneity
Let ( R , m R , k ) (R,\mathfrak {m}_R,\mathbb {k}) be a one-dimensional complete local reduced k \mathbb {k} -algebra over a field of characteristic zero. The ring R R is said to be quasihomogeneous if there exists a surjection Ω R ↠ m \Omega _R\twoheadrightarrow \mathfrak {m} where Ω R \Omega _R d...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2024-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
(
R
,
m
R
,
k
)
(R,\mathfrak {m}_R,\mathbb {k})
be a one-dimensional complete local reduced
k
\mathbb {k}
-algebra over a field of characteristic zero. The ring
R
R
is said to be quasihomogeneous if there exists a surjection
Ω
R
↠
m
\Omega _R\twoheadrightarrow \mathfrak {m}
where
Ω
R
\Omega _R
denotes the module of differentials. We present two characterizations of quasihomogeniety of
R
R
in the case when
R
R
is a domain. The first one on the valuation semigroup of
R
R
and the other on the trace ideal of the module
Ω
R
\Omega _R
. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16773 |