The structure of the spin^{ℎ} bordism spectrum
Spin h ^h manifolds are the quaternionic analogue to spin c \text {spin}^c manifolds. We compute the spin h \text {spin}^h bordism groups at the prime 2 2 by proving a structure theorem for the cohomology of the spin h \text {spin}^h bordism spectrum M S p i n h \mathrm {MSpin^h} as a module over th...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2024-08, Vol.152 (8), p.3605-3616 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Spin h ^h manifolds are the quaternionic analogue to spin c \text {spin}^c manifolds. We compute the spin h \text {spin}^h bordism groups at the prime 2 2 by proving a structure theorem for the cohomology of the spin h \text {spin}^h bordism spectrum M S p i n h \mathrm {MSpin^h} as a module over the mod 2 Steenrod algebra. This provides a 2-local splitting of M S p i n h \mathrm {MSpin^h} as a wedge sum of familiar spectra. We also compute the decomposition of H ∗ ( M S p i n h ; Z / 2 Z ) H^*(\mathrm {MSpin^h};\mathbb {Z}/2\mathbb {Z}) explicitly in degrees up through 30 via a counting process. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16748 |