The structure of the spin^{ℎ} bordism spectrum

Spin h ^h manifolds are the quaternionic analogue to spin c \text {spin}^c manifolds. We compute the spin h \text {spin}^h bordism groups at the prime 2 2 by proving a structure theorem for the cohomology of the spin h \text {spin}^h bordism spectrum M S p i n h \mathrm {MSpin^h} as a module over th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2024-08, Vol.152 (8), p.3605-3616
1. Verfasser: Mills, Keith
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spin h ^h manifolds are the quaternionic analogue to spin c \text {spin}^c manifolds. We compute the spin h \text {spin}^h bordism groups at the prime 2 2 by proving a structure theorem for the cohomology of the spin h \text {spin}^h bordism spectrum M S p i n h \mathrm {MSpin^h} as a module over the mod 2 Steenrod algebra. This provides a 2-local splitting of M S p i n h \mathrm {MSpin^h} as a wedge sum of familiar spectra. We also compute the decomposition of H ∗ ( M S p i n h ; Z / 2 Z ) H^*(\mathrm {MSpin^h};\mathbb {Z}/2\mathbb {Z}) explicitly in degrees up through 30 via a counting process.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/16748