On Benford’s law for multiplicative functions
We provide a criterion to determine whether a real multiplicative function is a strong Benford sequence. The criterion implies that the k-divisor functions, where k \neq 10^j, and Hecke eigenvalues of newforms, such as Ramanujan tau function, are strong Benford. In contrast to some earlier work, our...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-11, Vol.151 (11), p.4607-4619 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide a criterion to determine whether a real multiplicative function is a strong Benford sequence. The criterion implies that the k-divisor functions, where k \neq 10^j, and Hecke eigenvalues of newforms, such as Ramanujan tau function, are strong Benford. In contrast to some earlier work, our approach is based on Halász’s Theorem. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16480 |