A note on numerical radius attaining mappings
We prove that if every bounded linear operator (or N N -homogeneous polynomials) on a Banach space X X with the compact approximation property attains its numerical radius, then X X is a finite dimensional space. Moreover, we present an improvement of the polynomial James’ theorem for numerical radi...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-10, Vol.151 (10), p.4419-4434 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that if every bounded linear operator (or
N
N
-homogeneous polynomials) on a Banach space
X
X
with the compact approximation property attains its numerical radius, then
X
X
is a finite dimensional space. Moreover, we present an improvement of the polynomial James’ theorem for numerical radius proved by Acosta, Becerra Guerrero and Galán [Q. J. Math. 54 (2003), pp. 1–10]. Finally, the denseness of weakly (uniformly) continuous
2
2
-homogeneous polynomials on a Banach space whose Aron-Berner extensions attain their numerical radii is obtained. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16457 |