Polynomial tractability for integration in an unweighted function space with absolutely convergent Fourier series
In this note, we prove that the following function space with absolutely convergent Fourier series \[ F_d≔\left \{ f\in L^2([0,1)^d)\middle | \|f\|≔\sum _{\boldsymbol {k}\in {\mathbb {Z}}^d}|\hat {f}({\boldsymbol {k}}) |\max \left (1,\min _{j\in \operatorname {supp}({\boldsymbol {k}})}\log |k_j|\rig...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-09, Vol.151 (9), p.3925, Article 3925 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we prove that the following function space with absolutely convergent Fourier series \[ F_d≔\left \{ f\in L^2([0,1)^d)\middle | \|f\|≔\sum _{\boldsymbol {k}\in {\mathbb {Z}}^d}|\hat {f}({\boldsymbol {k}}) |\max \left (1,\min _{j\in \operatorname {supp}({\boldsymbol {k}})}\log |k_j|\right ) |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16444 |