Controlling distribution of prime sequences in discretely ordered principal ideal subrings of ℚ[ ]
We show how to construct discretely ordered principal ideal subrings of Q [ x ] \mathbb {Q}[x] with various types of prime behaviour. Given any set D \mathcal D consisting of finite strictly increasing sequences ( d 1 , d 2 , … , d l ) (d_1,d_2,\dots , d_l) of positive integers such that, for each p...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-08 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show how to construct discretely ordered principal ideal subrings of
Q
[
x
]
\mathbb {Q}[x]
with various types of prime behaviour. Given any set
D
\mathcal D
consisting of finite strictly increasing sequences
(
d
1
,
d
2
,
…
,
d
l
)
(d_1,d_2,\dots , d_l)
of positive integers such that, for each prime integer
p
p
, the set
{
p
Z
,
d
1
+
p
Z
,
…
,
d
l
+
p
Z
}
\{p\mathbb {Z}, d_1+p\mathbb {Z},\dots , d_l+p\mathbb {Z}\}
does not contain all the cosets modulo
p
p
, we can stipulate to have, for each
(
d
1
,
…
,
d
l
)
∈
D
(d_1,\dots , d_l)\in \mathcal D
, a cofinal set of progressions
(
f
,
f
+
d
1
,
…
,
f
+
d
l
)
(f, f+d_1, \dots , f+d_l)
of prime elements in our principal ideal domain
R
τ
R_\tau
. Moreover, we can simultaneously guarantee that each positive prime
g
∈
R
τ
∖
N
g\in R_\tau \setminus \mathbb {N}
is either in a prescribed progression as above or there is no other prime
h
h
in
R
τ
R_\tau
such that
g
−
h
∈
Z
g-h\in \mathbb {Z}
.
Finally, all the principal ideal domains we thus construct are non-Euclidean and isomorphic to subrings of the ring
Z
^
\widehat {\mathbb {Z}}
of profinite integers. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16358 |