Holomorphic isometries into homogeneous bounded domains

We prove two rigidity theorems on holomorphic isometries into homogeneous bounded domains. The first shows that a Kähler-Ricci soliton induced by the homogeneous metric of a homogeneous bounded domain is trivial, i.e. Kähler-Einstein. In the second one we prove that a homogeneous bounded domain and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2023-09, Vol.151 (9), p.3975, Article 3975
Hauptverfasser: Loi, Andrea, Mossa, Roberto
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove two rigidity theorems on holomorphic isometries into homogeneous bounded domains. The first shows that a Kähler-Ricci soliton induced by the homogeneous metric of a homogeneous bounded domain is trivial, i.e. Kähler-Einstein. In the second one we prove that a homogeneous bounded domain and the flat (definite or indefinite) complex Euclidean space are not relatives, i.e. they do not share a common Kähler submanifold (of positive dimension). Our theorems extend the results proved by us earlier [Proc. Amer. Math. Soc. 149 (2021), pp. 4931–4941] and by Xiaoliang Cheng and Yihong Hao [Ann. Global Anal. Geom. 60 (2021), pp. 167–180].
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/16335