A generalization of the GGR conjecture
For each positive integer n n , function f f , and point c c , the GGR Theorem states that f f is n n times Peano differentiable at c c if and only if f f is n − 1 n-1 times Peano differentiable at c c and the following n n -th generalized Riemann derivatives of f f at c c exist: \[ lim h → 0 1 h n...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For each positive integer
n
n
, function
f
f
, and point
c
c
, the GGR Theorem states that
f
f
is
n
n
times Peano differentiable at
c
c
if and only if
f
f
is
n
−
1
n-1
times Peano differentiable at
c
c
and the following
n
n
-th generalized Riemann derivatives of
f
f
at
c
c
exist:
\[
lim
h
→
0
1
h
n
∑
i
=
0
n
(
−
1
)
i
(
n
i
)
f
(
c
+
(
n
−
i
−
k
)
h
)
,
\lim _{h\rightarrow 0}\frac 1{h^{n}}\sum _{i=0}^n(-1)^i\binom {n}{i}f(c+(n-i-k)h),
\]
for
k
=
0
,
…
,
n
−
1
k=0,\ldots ,n-1
. The theorem has been recently proved by Ash and Catoiu [Int. Math. Res. Not. IMRN 2022, no. 10, pp. 7893–7921] and has been a conjecture by Ginchev, Guerraggio, and Rocca [
Equivalence of Peano and Riemann derivatives
, Generalized convexity and optimization for economic and financial decisions (Verona, 1998), Pitagora, Bologna, 1999] since 1998. We provide a new proof of this theorem, based on a generalization of it that produces numerous new sets of
n
n
-th Riemann smoothness conditions that can play the role of the above set in the GGR Theorem. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16282 |