Constructing free products of cyclic subgroups inside the group of units of integral group rings

It has been proved in Janssens, Jespers, and Temmerman [Proc. Amer. Math. Soc. 145 (2017), pp. 2771–2783] that if h is an element of prime order p in a finite nilpotent group G and u=h+(h-1)g\widehat {h}\in \mathbb {Z}G, u\not \in G, then \langle u^*,u\rangle \approx C_p\ast C_p. We offer a simple g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2023-04, Vol.151 (4), p.1487
Hauptverfasser: Marciniak, Zbigniew, Sehgal, Sudarshan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been proved in Janssens, Jespers, and Temmerman [Proc. Amer. Math. Soc. 145 (2017), pp. 2771–2783] that if h is an element of prime order p in a finite nilpotent group G and u=h+(h-1)g\widehat {h}\in \mathbb {Z}G, u\not \in G, then \langle u^*,u\rangle \approx C_p\ast C_p. We offer a simple geometric approach to generalize this result.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/16249