Constructing free products of cyclic subgroups inside the group of units of integral group rings
It has been proved in Janssens, Jespers, and Temmerman [Proc. Amer. Math. Soc. 145 (2017), pp. 2771–2783] that if h is an element of prime order p in a finite nilpotent group G and u=h+(h-1)g\widehat {h}\in \mathbb {Z}G, u\not \in G, then \langle u^*,u\rangle \approx C_p\ast C_p. We offer a simple g...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-04, Vol.151 (4), p.1487 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has been proved in Janssens, Jespers, and Temmerman [Proc. Amer. Math. Soc. 145 (2017), pp. 2771–2783] that if h is an element of prime order p in a finite nilpotent group G and u=h+(h-1)g\widehat {h}\in \mathbb {Z}G, u\not \in G, then \langle u^*,u\rangle \approx C_p\ast C_p. We offer a simple geometric approach to generalize this result. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16249 |