Mapping properties of operator-valued Bergman projections

In this paper, we study the boundedness theory for Bergman projection in the operator-valued setting. More precisely, let \mathbb {D} be the open unit disk in the complex plane \mathbb {C} and \mathcal {M} be a semifinite von Neumann algebra. We prove that \begin{equation*} \|P(f)\|_{L_{1,\infty }(\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2023-03, Vol.151 (3), p.1221-1234
Hauptverfasser: Wang, Liang, Xu, Bang, Zhou, Dejian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the boundedness theory for Bergman projection in the operator-valued setting. More precisely, let \mathbb {D} be the open unit disk in the complex plane \mathbb {C} and \mathcal {M} be a semifinite von Neumann algebra. We prove that \begin{equation*} \|P(f)\|_{L_{1,\infty }(\mathcal {N})}\leq C \|f\|_{L_1(\mathcal {N})}, \end{equation*} where \mathcal {N}=L_{\infty }(\mathbb {D})\bar {\otimes }\mathcal {M} and P denotes the Bergman projection. Consequently, P is bounded on L_{p}(\mathcal {N}) with 1
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/16213