Mapping properties of operator-valued Bergman projections
In this paper, we study the boundedness theory for Bergman projection in the operator-valued setting. More precisely, let \mathbb {D} be the open unit disk in the complex plane \mathbb {C} and \mathcal {M} be a semifinite von Neumann algebra. We prove that \begin{equation*} \|P(f)\|_{L_{1,\infty }(\...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-03, Vol.151 (3), p.1221-1234 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the boundedness theory for Bergman projection in the operator-valued setting. More precisely, let \mathbb {D} be the open unit disk in the complex plane \mathbb {C} and \mathcal {M} be a semifinite von Neumann algebra. We prove that \begin{equation*} \|P(f)\|_{L_{1,\infty }(\mathcal {N})}\leq C \|f\|_{L_1(\mathcal {N})}, \end{equation*} where \mathcal {N}=L_{\infty }(\mathbb {D})\bar {\otimes }\mathcal {M} and P denotes the Bergman projection. Consequently, P is bounded on L_{p}(\mathcal {N}) with 1 |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16213 |