Partitions of topological spaces and a new club-like principle

We give a new proof of the following theorem due to W. Weiss and P. Komjath: if X is a regular topological space, with character < \mathfrak{b} and X \rightarrow (top\, \omega + 1)^{1}_{\omega }, then, for all \alpha < \omega _1, X \rightarrow (top\, \alpha )^{1}_{\omega }, fixing a gap in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2023-01, Vol.151 (4), p.1787-1800
Hauptverfasser: Carvalho, Rodrigo, Fernandes, Gabriel, Junqueira, Lúcia R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1800
container_issue 4
container_start_page 1787
container_title Proceedings of the American Mathematical Society
container_volume 151
creator Carvalho, Rodrigo
Fernandes, Gabriel
Junqueira, Lúcia R.
description We give a new proof of the following theorem due to W. Weiss and P. Komjath: if X is a regular topological space, with character < \mathfrak{b} and X \rightarrow (top\, \omega + 1)^{1}_{\omega }, then, for all \alpha < \omega _1, X \rightarrow (top\, \alpha )^{1}_{\omega }, fixing a gap in the original one. For that we consider a new decomposition of topological spaces. We also define a new combinatorial principle \clubsuit _{F}, and use it to prove that it is consistent with \neg CH that \mathfrak{b} is the optimal bound for the character of X. In [Proc. Amer. Math. Soc. 101 (1987), pp. 767–770], this was obtained using \diamondsuit .
doi_str_mv 10.1090/proc/16208
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_16208</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_16208</sourcerecordid><originalsourceid>FETCH-LOGICAL-a256t-b9392d1ad8f32df4f222f3ea7c44d9d695bfa9139b96452f57b0e522446ccb3b3</originalsourceid><addsrcrecordid>eNp9jztLBDEUhYMouK42_oI0NkLcvCYzaQRZfMGCFloPNy-JZidDMiL-e2dda6vLgY9z7ofQOaNXjGq6Gku2K6Y47Q7QgtGuI6rj6hAtKKWcaC30MTqp9X2OTMt2ga6foUxxinmoOAc85TGn_BYtJFxHsL5iGBwGPPgvbNOnISl-eDyWONg4Jn-KjgKk6s_-7hK93t2-rB_I5un-cX2zIcAbNREzD3PHwHVBcBdk4JwH4aG1UjrtlG5MAM2ENlrJhoemNdQ3nEuprDXCiCW63PfakmstPvTzC1so3z2j_c6835n3v-YzfLGHYVv_434Ax15Yhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Partitions of topological spaces and a new club-like principle</title><source>American Mathematical Society Publications</source><creator>Carvalho, Rodrigo ; Fernandes, Gabriel ; Junqueira, Lúcia R.</creator><creatorcontrib>Carvalho, Rodrigo ; Fernandes, Gabriel ; Junqueira, Lúcia R.</creatorcontrib><description>We give a new proof of the following theorem due to W. Weiss and P. Komjath: if X is a regular topological space, with character &lt; \mathfrak{b} and X \rightarrow (top\, \omega + 1)^{1}_{\omega }, then, for all \alpha &lt; \omega _1, X \rightarrow (top\, \alpha )^{1}_{\omega }, fixing a gap in the original one. For that we consider a new decomposition of topological spaces. We also define a new combinatorial principle \clubsuit _{F}, and use it to prove that it is consistent with \neg CH that \mathfrak{b} is the optimal bound for the character of X. In [Proc. Amer. Math. Soc. 101 (1987), pp. 767–770], this was obtained using \diamondsuit .</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/16208</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2023-01, Vol.151 (4), p.1787-1800</ispartof><rights>Copyright 2023 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a256t-b9392d1ad8f32df4f222f3ea7c44d9d695bfa9139b96452f57b0e522446ccb3b3</cites><orcidid>0000-0002-4458-4066 ; 0000-0002-1555-6824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2023-151-04/S0002-9939-2023-16208-5/S0002-9939-2023-16208-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2023-151-04/S0002-9939-2023-16208-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77578,77588</link.rule.ids></links><search><creatorcontrib>Carvalho, Rodrigo</creatorcontrib><creatorcontrib>Fernandes, Gabriel</creatorcontrib><creatorcontrib>Junqueira, Lúcia R.</creatorcontrib><title>Partitions of topological spaces and a new club-like principle</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>We give a new proof of the following theorem due to W. Weiss and P. Komjath: if X is a regular topological space, with character &lt; \mathfrak{b} and X \rightarrow (top\, \omega + 1)^{1}_{\omega }, then, for all \alpha &lt; \omega _1, X \rightarrow (top\, \alpha )^{1}_{\omega }, fixing a gap in the original one. For that we consider a new decomposition of topological spaces. We also define a new combinatorial principle \clubsuit _{F}, and use it to prove that it is consistent with \neg CH that \mathfrak{b} is the optimal bound for the character of X. In [Proc. Amer. Math. Soc. 101 (1987), pp. 767–770], this was obtained using \diamondsuit .</description><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9jztLBDEUhYMouK42_oI0NkLcvCYzaQRZfMGCFloPNy-JZidDMiL-e2dda6vLgY9z7ofQOaNXjGq6Gku2K6Y47Q7QgtGuI6rj6hAtKKWcaC30MTqp9X2OTMt2ga6foUxxinmoOAc85TGn_BYtJFxHsL5iGBwGPPgvbNOnISl-eDyWONg4Jn-KjgKk6s_-7hK93t2-rB_I5un-cX2zIcAbNREzD3PHwHVBcBdk4JwH4aG1UjrtlG5MAM2ENlrJhoemNdQ3nEuprDXCiCW63PfakmstPvTzC1so3z2j_c6835n3v-YzfLGHYVv_434Ax15Yhw</recordid><startdate>20230113</startdate><enddate>20230113</enddate><creator>Carvalho, Rodrigo</creator><creator>Fernandes, Gabriel</creator><creator>Junqueira, Lúcia R.</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4458-4066</orcidid><orcidid>https://orcid.org/0000-0002-1555-6824</orcidid></search><sort><creationdate>20230113</creationdate><title>Partitions of topological spaces and a new club-like principle</title><author>Carvalho, Rodrigo ; Fernandes, Gabriel ; Junqueira, Lúcia R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a256t-b9392d1ad8f32df4f222f3ea7c44d9d695bfa9139b96452f57b0e522446ccb3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carvalho, Rodrigo</creatorcontrib><creatorcontrib>Fernandes, Gabriel</creatorcontrib><creatorcontrib>Junqueira, Lúcia R.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carvalho, Rodrigo</au><au>Fernandes, Gabriel</au><au>Junqueira, Lúcia R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partitions of topological spaces and a new club-like principle</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2023-01-13</date><risdate>2023</risdate><volume>151</volume><issue>4</issue><spage>1787</spage><epage>1800</epage><pages>1787-1800</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>We give a new proof of the following theorem due to W. Weiss and P. Komjath: if X is a regular topological space, with character &lt; \mathfrak{b} and X \rightarrow (top\, \omega + 1)^{1}_{\omega }, then, for all \alpha &lt; \omega _1, X \rightarrow (top\, \alpha )^{1}_{\omega }, fixing a gap in the original one. For that we consider a new decomposition of topological spaces. We also define a new combinatorial principle \clubsuit _{F}, and use it to prove that it is consistent with \neg CH that \mathfrak{b} is the optimal bound for the character of X. In [Proc. Amer. Math. Soc. 101 (1987), pp. 767–770], this was obtained using \diamondsuit .</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/16208</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4458-4066</orcidid><orcidid>https://orcid.org/0000-0002-1555-6824</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2023-01, Vol.151 (4), p.1787-1800
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_16208
source American Mathematical Society Publications
subjects Research article
title Partitions of topological spaces and a new club-like principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A03%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partitions%20of%20topological%20spaces%20and%20a%20new%20club-like%20principle&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Carvalho,%20Rodrigo&rft.date=2023-01-13&rft.volume=151&rft.issue=4&rft.spage=1787&rft.epage=1800&rft.pages=1787-1800&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/16208&rft_dat=%3Cams_cross%3E10_1090_proc_16208%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true