Partitions of topological spaces and a new club-like principle

We give a new proof of the following theorem due to W. Weiss and P. Komjath: if X is a regular topological space, with character < \mathfrak{b} and X \rightarrow (top\, \omega + 1)^{1}_{\omega }, then, for all \alpha < \omega _1, X \rightarrow (top\, \alpha )^{1}_{\omega }, fixing a gap in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2023-01, Vol.151 (4), p.1787-1800
Hauptverfasser: Carvalho, Rodrigo, Fernandes, Gabriel, Junqueira, Lúcia R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a new proof of the following theorem due to W. Weiss and P. Komjath: if X is a regular topological space, with character < \mathfrak{b} and X \rightarrow (top\, \omega + 1)^{1}_{\omega }, then, for all \alpha < \omega _1, X \rightarrow (top\, \alpha )^{1}_{\omega }, fixing a gap in the original one. For that we consider a new decomposition of topological spaces. We also define a new combinatorial principle \clubsuit _{F}, and use it to prove that it is consistent with \neg CH that \mathfrak{b} is the optimal bound for the character of X. In [Proc. Amer. Math. Soc. 101 (1987), pp. 767–770], this was obtained using \diamondsuit .
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/16208