Partitions of topological spaces and a new club-like principle
We give a new proof of the following theorem due to W. Weiss and P. Komjath: if X is a regular topological space, with character < \mathfrak{b} and X \rightarrow (top\, \omega + 1)^{1}_{\omega }, then, for all \alpha < \omega _1, X \rightarrow (top\, \alpha )^{1}_{\omega }, fixing a gap in the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-01, Vol.151 (4), p.1787-1800 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a new proof of the following theorem due to W. Weiss and P. Komjath: if X is a regular topological space, with character < \mathfrak{b} and X \rightarrow (top\, \omega + 1)^{1}_{\omega }, then, for all \alpha < \omega _1, X \rightarrow (top\, \alpha )^{1}_{\omega }, fixing a gap in the original one. For that we consider a new decomposition of topological spaces. We also define a new combinatorial principle \clubsuit _{F}, and use it to prove that it is consistent with \neg CH that \mathfrak{b} is the optimal bound for the character of X. In [Proc. Amer. Math. Soc. 101 (1987), pp. 767–770], this was obtained using \diamondsuit . |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16208 |