Square-free smooth polynomials in residue classes and generators of irreducible polynomials
Building upon the work of A. Booker and C. Pomerance [Proc. Amer. Math. Soc. 145 (2017), pp. 5035–5042], we prove that for a prime power q \geq 7, every residue class modulo an irreducible polynomial F \in \mathbb{F}_q[X] has a non-constant, square-free representative which has no irreducible factor...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-03, Vol.151 (3), p.1017-1029 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Building upon the work of A. Booker and C. Pomerance [Proc. Amer. Math. Soc. 145 (2017), pp. 5035–5042], we prove that for a prime power q \geq 7, every residue class modulo an irreducible polynomial F \in \mathbb{F}_q[X] has a non-constant, square-free representative which has no irreducible factors of degree exceeding \deg F -1. We also give applications to generating sequences of irreducible polynomials. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16201 |