Square-free smooth polynomials in residue classes and generators of irreducible polynomials

Building upon the work of A. Booker and C. Pomerance [Proc. Amer. Math. Soc. 145 (2017), pp. 5035–5042], we prove that for a prime power q \geq 7, every residue class modulo an irreducible polynomial F \in \mathbb{F}_q[X] has a non-constant, square-free representative which has no irreducible factor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2023-03, Vol.151 (3), p.1017-1029
1. Verfasser: Bagshaw, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Building upon the work of A. Booker and C. Pomerance [Proc. Amer. Math. Soc. 145 (2017), pp. 5035–5042], we prove that for a prime power q \geq 7, every residue class modulo an irreducible polynomial F \in \mathbb{F}_q[X] has a non-constant, square-free representative which has no irreducible factors of degree exceeding \deg F -1. We also give applications to generating sequences of irreducible polynomials.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/16201