The non-tangential boundary behavior of the matrix-valued rational inner functions on bounded symmetric domain

Knese [Proc. LMS 111(2015), pp. 1261–1306] proved every rational inner function on polydisc has a non-tangential limit at every point of the Shilov boundary. We extended his result to the case of functions on general bounded symmetric domains. Namely, every rational inner function on a bounded symme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2023-01, Vol.151 (4), p.1539-1551
Hauptverfasser: Wang, Kai, Zhang, Shuyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1551
container_issue 4
container_start_page 1539
container_title Proceedings of the American Mathematical Society
container_volume 151
creator Wang, Kai
Zhang, Shuyi
description Knese [Proc. LMS 111(2015), pp. 1261–1306] proved every rational inner function on polydisc has a non-tangential limit at every point of the Shilov boundary. We extended his result to the case of functions on general bounded symmetric domains. Namely, every rational inner function on a bounded symmetric domain has a non-tangential limit of modulus 1 at every point of the Shilov boundary. We also prove that every matrix-valued rational inner function on tube-type domain has a unitary non-tangential limit at every point of the Shilov boundary.
doi_str_mv 10.1090/proc/16154
format Article
fullrecord <record><control><sourceid>ams_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1090_proc_16154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_16154</sourcerecordid><originalsourceid>FETCH-LOGICAL-a186t-7e9e5660738563602ac0f9eb027a6362bbadde8bb6f86d66603ba6d74437f11b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMouFYv_oJcvAixye42mxyl-AUFL_W8TDaJjXSTkqTF_ntT17On4R2eeWEehG4ZfWBU0vkuhmHOOFu0Z6hiVAjCRc3PUUUprYmUjbxEVyl9lchk21XIrzcG--BJBv9pfHawxSrsvYZ4xMps4OBCxMHiXLgRcnTf5ADbvdE4QnbBF955byK2ez-cFgkHP1UUJh3H0ZSjAeswgvPX6MLCNpmbvzlDH89P6-UrWb2_vC0fVwSY4Jl0RpoF57RrxII3nNYwUCuNonUHJddKgdZGKMWt4JoXslHAdde2TWcZU80M3U-9QwwpRWP7XXRj-alntD-Z6k-m-l9TBb6bYBjTf9wPtt5q6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The non-tangential boundary behavior of the matrix-valued rational inner functions on bounded symmetric domain</title><source>American Mathematical Society Publications</source><creator>Wang, Kai ; Zhang, Shuyi</creator><creatorcontrib>Wang, Kai ; Zhang, Shuyi</creatorcontrib><description>Knese [Proc. LMS 111(2015), pp. 1261–1306] proved every rational inner function on polydisc has a non-tangential limit at every point of the Shilov boundary. We extended his result to the case of functions on general bounded symmetric domains. Namely, every rational inner function on a bounded symmetric domain has a non-tangential limit of modulus 1 at every point of the Shilov boundary. We also prove that every matrix-valued rational inner function on tube-type domain has a unitary non-tangential limit at every point of the Shilov boundary.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/16154</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Proceedings of the American Mathematical Society, 2023-01, Vol.151 (4), p.1539-1551</ispartof><rights>Copyright 2023 American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a186t-7e9e5660738563602ac0f9eb027a6362bbadde8bb6f86d66603ba6d74437f11b3</cites><orcidid>0000-0002-7109-5305 ; 0000-0003-3002-3978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2023-151-04/S0002-9939-2023-16154-7/S0002-9939-2023-16154-7.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2023-151-04/S0002-9939-2023-16154-7/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77579,77589</link.rule.ids></links><search><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Zhang, Shuyi</creatorcontrib><title>The non-tangential boundary behavior of the matrix-valued rational inner functions on bounded symmetric domain</title><title>Proceedings of the American Mathematical Society</title><addtitle>Proc. Amer. Math. Soc</addtitle><description>Knese [Proc. LMS 111(2015), pp. 1261–1306] proved every rational inner function on polydisc has a non-tangential limit at every point of the Shilov boundary. We extended his result to the case of functions on general bounded symmetric domains. Namely, every rational inner function on a bounded symmetric domain has a non-tangential limit of modulus 1 at every point of the Shilov boundary. We also prove that every matrix-valued rational inner function on tube-type domain has a unitary non-tangential limit at every point of the Shilov boundary.</description><subject>Research article</subject><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMouFYv_oJcvAixye42mxyl-AUFL_W8TDaJjXSTkqTF_ntT17On4R2eeWEehG4ZfWBU0vkuhmHOOFu0Z6hiVAjCRc3PUUUprYmUjbxEVyl9lchk21XIrzcG--BJBv9pfHawxSrsvYZ4xMps4OBCxMHiXLgRcnTf5ADbvdE4QnbBF955byK2ez-cFgkHP1UUJh3H0ZSjAeswgvPX6MLCNpmbvzlDH89P6-UrWb2_vC0fVwSY4Jl0RpoF57RrxII3nNYwUCuNonUHJddKgdZGKMWt4JoXslHAdde2TWcZU80M3U-9QwwpRWP7XXRj-alntD-Z6k-m-l9TBb6bYBjTf9wPtt5q6Q</recordid><startdate>20230113</startdate><enddate>20230113</enddate><creator>Wang, Kai</creator><creator>Zhang, Shuyi</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7109-5305</orcidid><orcidid>https://orcid.org/0000-0003-3002-3978</orcidid></search><sort><creationdate>20230113</creationdate><title>The non-tangential boundary behavior of the matrix-valued rational inner functions on bounded symmetric domain</title><author>Wang, Kai ; Zhang, Shuyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a186t-7e9e5660738563602ac0f9eb027a6362bbadde8bb6f86d66603ba6d74437f11b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Zhang, Shuyi</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kai</au><au>Zhang, Shuyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The non-tangential boundary behavior of the matrix-valued rational inner functions on bounded symmetric domain</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><stitle>Proc. Amer. Math. Soc</stitle><date>2023-01-13</date><risdate>2023</risdate><volume>151</volume><issue>4</issue><spage>1539</spage><epage>1551</epage><pages>1539-1551</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Knese [Proc. LMS 111(2015), pp. 1261–1306] proved every rational inner function on polydisc has a non-tangential limit at every point of the Shilov boundary. We extended his result to the case of functions on general bounded symmetric domains. Namely, every rational inner function on a bounded symmetric domain has a non-tangential limit of modulus 1 at every point of the Shilov boundary. We also prove that every matrix-valued rational inner function on tube-type domain has a unitary non-tangential limit at every point of the Shilov boundary.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/proc/16154</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7109-5305</orcidid><orcidid>https://orcid.org/0000-0003-3002-3978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9939
ispartof Proceedings of the American Mathematical Society, 2023-01, Vol.151 (4), p.1539-1551
issn 0002-9939
1088-6826
language eng
recordid cdi_crossref_primary_10_1090_proc_16154
source American Mathematical Society Publications
subjects Research article
title The non-tangential boundary behavior of the matrix-valued rational inner functions on bounded symmetric domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20non-tangential%20boundary%20behavior%20of%20the%20matrix-valued%20rational%20inner%20functions%20on%20bounded%20symmetric%20domain&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Wang,%20Kai&rft.date=2023-01-13&rft.volume=151&rft.issue=4&rft.spage=1539&rft.epage=1551&rft.pages=1539-1551&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/16154&rft_dat=%3Cams_cross%3E10_1090_proc_16154%3C/ams_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true