The non-tangential boundary behavior of the matrix-valued rational inner functions on bounded symmetric domain

Knese [Proc. LMS 111(2015), 1261-1306] proved every rational inner function on polydisc has a non-tangential limit at every point of the Shilov boundary. We extended his result to the case of functions on general bounded symmetric domains. Namely, every rational inner function on a bounded symmetric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2023-01, Vol.151 (4), p.1539
Hauptverfasser: Wang, Kai, Zhang, Shuyi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Knese [Proc. LMS 111(2015), 1261-1306] proved every rational inner function on polydisc has a non-tangential limit at every point of the Shilov boundary. We extended his result to the case of functions on general bounded symmetric domains. Namely, every rational inner function on a bounded symmetric domain has a non-tangential limit of modulus 1 at every point of the Shilov boundary. We also prove that every matrix-valued rational inner function on tube-type domain has a unitary non-tangential limit at every point of the Shilov boundary.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/16154