The non-tangential boundary behavior of the matrix-valued rational inner functions on bounded symmetric domain
Knese [Proc. LMS 111(2015), 1261-1306] proved every rational inner function on polydisc has a non-tangential limit at every point of the Shilov boundary. We extended his result to the case of functions on general bounded symmetric domains. Namely, every rational inner function on a bounded symmetric...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-01, Vol.151 (4), p.1539 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Knese [Proc. LMS 111(2015), 1261-1306] proved every rational inner function on polydisc has a non-tangential limit at every point of the Shilov boundary. We extended his result to the case of functions on general bounded symmetric domains. Namely, every rational inner function on a bounded symmetric domain has a non-tangential limit of modulus 1 at every point of the Shilov boundary. We also prove that every matrix-valued rational inner function on tube-type domain has a unitary non-tangential limit at every point of the Shilov boundary. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16154 |