The diffeomorphism group of the solid closed torus and Hochschild homology
We prove that for a self-injective ribbon Grothendieck-Verdier category \mathcal {C} in the sense of Boyarchenko-Drinfeld the cyclic action on the Hochschild complex of \mathcal {C} extends to an action of the diffeomorphism group of the solid closed torus \mathbb {S}^1 \times \mathbb {D}^2.
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-06, Vol.151 (6), p.2311 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that for a self-injective ribbon Grothendieck-Verdier category \mathcal {C} in the sense of Boyarchenko-Drinfeld the cyclic action on the Hochschild complex of \mathcal {C} extends to an action of the diffeomorphism group of the solid closed torus \mathbb {S}^1 \times \mathbb {D}^2. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/16134 |